
Contents lists available at ScienceDirect

Geoderma

journal homepage: www.elsevier.com/locate/geoderma

X-ray fluorescence and visible near infrared sensor fusion for predicting soil
chromium content
Dongyun Xua, Songchao Chenb, R.A. Viscarra Rosselc, Asim Biswasd, Shuo Lie, Yin Zhoua,
Zhou Shia,f,g,⁎

a Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou
310058, China
b INRA, Unité InfoSol, 45075 Orléans, France
c School Molecular & Life Sciences, Curtin University, 6102 Bentley, Australia
d School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
e College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
f Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou, China
g State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China

A R T I C L E I N F O

Handling Editor: Alex McBratney

Keywords:
Outer-product analysis
Granger–Ramanathan averaging
Proximal soil sensor
Soil spectroscopy

A B S T R A C T

Anthropogenic activities, such as sewage irrigation and application of pesticides and fertilizers, are the main
cause of chromium (Cr) contamination in agricultural soils. Cr contamination reduces soil quality and threatens
environmental and human health. Conventional Cr measurement methods, although accurate, involve complex
sample processing steps and sophisticated laboratory analysis, which are time-consuming, costly, and often
environmentally unfriendly. X-ray fluorescence (XRF) and visible near-infrared (vis–NIR) spectroscopy have
been recognized as alternatives to measure soil heavy metal contamination in a cheap, fast, non-destructive, and
environmentally conscious manner. In this study, 301 paddy soil samples from Fuyang, Zhejiang Province, China
were used to explore the feasibility and effectiveness of XRF and vis–NIR spectra separately and in combination
for estimating the soil Cr content. Two strategies, including outer-product analysis (OPA) and
Granger–Ramanathan averaging (GRA), were used to combine the spectra and spectral models, respectively,
from the two instruments (sensor fusion). Partial least-squares regression (PLSR) was used to train the models
using a single sensor (XRF or vis-NIR spectra) and OPA fused spectra. Fifty boot straps were used to assess the
uncertainty of the predictions for the aforementioned models. The results indicated that XRF spectra performed
better than vis–NIR spectra for predictions of Cr content, with a Lin's concordance correlation coefficient (ρc) of
0.83, a root mean square error (RMSE) of 8.80, and a ratio of prediction derivation (RPD) of 1.75. Sensor fusion
by OPA gave the highest prediction accuracy with a ρc of 0.90, RMSE of 6.80, and RPD of 2.30. The sensor fusion
by GRA gave similar results with a ρc of 0.88, RMSE of 7.40, and RPD of 2.13. The predictions using both
methods (OPA and GRA) were acceptable when considering the standard deviation of differences (SDD=4.23).
This suggests that OPA and the GRA sensor fusion methods are efficient and accurate for rapid measurement of
Cr and provide a way forward for using these technologies for fast, sensor-based soil characterization.

1. Introduction

Chromium (Cr) is widely distributed in soils and rocks. The two
main valence states for Cr in soils are Cr(III) and Cr(VI) (Di Palma et al.,
2015). The Cr(VI) state is toxic and can be taken up by plants, accu-
mulated in plants, and be absorbed by humans where it has carcino-
genic effects (Ellis et al., 2002). Over the past decades, Cr

contamination in soils has increased with the rapid increase of popu-
lation and industry (Gao and Xia, 2011). Environmental protection
agencies in many countries, including the United States Environmental
Protection Agency, have ranked Cr as a priority soil pollutant (Juvera-
Espinosa et al., 2006; Fernández et al., 2010). Therefore, it is critical to
better characterize the soil Cr content to understand its effects and
associated environmental issues that could affect humans.
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Traditionally, the measurement of soil heavy metal content requires
field sampling followed by wet chemical digestion and inductively
coupled plasma (ICP) or atomic absorption spectrometry (AAS) ana-
lyses. Soil sampling and wet chemical digestion are usually labor-in-
tensive, time-consuming, costly, and often environmentally unfriendly.
Because of these challenges, traditional methods are limited to specific
sampling sites and they are unable to provide spatial variations of Cr
contamination quickly over large areas (Shi et al., 2014). Therefore,
rapid, accurate, and environmentally friendly techniques are needed for
the determination of soil Cr. And improvements in analytical techni-
ques also provides an opportunity to increase sampling density, which
will be helpful for obtaining a more detailed understanding of spatial
variations and improving decision making. More recently, proximal soil
sensing techniques, such as X-ray fluorescence spectroscopy (XRF) and
visible and near-infrared (vis–NIR) spectroscopy, have gained the at-
tention of researchers for rapid characterization of soil.

X-ray fluorescence spectroscopy (XRF) has become increasingly
popular for its high sample throughput and minimal sample preparation
(Zhu et al., 2011). It provides accurate total elemental contents of soils
in a short time (Reidinger et al., 2012), and especially useful for the
measurement of heavy metal content in soils (O'Rourke et al., 2016;
Caporale et al., 2018). It can be used for rapid, cost-effective, and
simple monitoring of contaminated soils. Moreover, XRF is applicable
both under laboratory and field conditions as it creates no toxic waste,
which is beneficial compared with traditional laboratory analysis.

Similarly, visible and near-infrared (vis–NIR) spectroscopy has been
widely applied in the evaluation of soil properties, such as soil organic
matter, clay minerals and iron oxides (Shi et al., 2015; Ji et al., 2015;
Xu et al., 2018), because it is cheap, fast, effective, non-destructive, and
environmentally friendly (Stenberg et al., 2010; Viscarra Rossel et al.,
2016; Chen et al., 2019a). Some researchers have also investigated
vis–NIR for the measurement of soil heavy metal contents (Shi et al.,
2014; Horta et al., 2015; Chakraborty et al., 2017). Although there are
no direct spectral features for heavy metals such as Cr in the vis–NIR
regions (Baveye and Laba, 2015), heavy metals are often bound to soil
components such as iron oxides, clay minerals, and organic matter
(Choe et al., 2008; Chen et al., 2015; Shi et al., 2016). Thus, there is a
close relationship between heavy metals and these soil components that
do have direct responses in the vis–NIR region of the electromagnetic
spectrum (Piccolo and Stevenson, 1982). Previous studies have shown
the potential of vis–NIR spectroscopy for indirect measurements of
heavy metals with reliable prediction accuracy (Kemper and Sommer,
2002; Sun et al., 2018).

Despite the advantages of being rapid and convenient, XRF and vis-
NIR spectroscopic predictions of soil properties often suffer from a high
degree of uncertainty, which is mostly caused by soil sample hetero-
geneity (Argyraki et al., 1997; Hou et al., 2004). Therefore, integrated
applications of proximal soil sensing techniques such as XRF and
vis–NIR, and vis–NIR and MIR have been tested to improve the pre-
diction accuracy (Viscarra Rossel et al., 2006; Wang et al., 2015;
O'Rourke et al., 2016; Xu et al., 2019). Generally, the main methods for
integration of sensors are data integration (e.g., outer product analysis,
OPA) and model integration (e.g., model averaging). OPA is a method
which makes it possible to emphasize co-evolution of spectral regions in
signals obtained from two different spectra or even from the same
spectrum (Jaillais et al., 2006; Barros et al., 2008). Therefore, OPA can
combine spectra from different sensors and analyze their mutual var-
iations caused by different concentrations of components in soil sam-
ples (Vesela et al., 2007; Terra et al., 2019). The applications of OPA are
mainly in food science (Jaillais et al., 2006; Vesela et al., 2007) with a
recent application in soil science (Terra et al., 2019). Application of
OPA in combining XRF and vis–NIR spectra of soil samples has yet to be
explored. Another method of sensor fusion, combining different model
outcomes into a new one, is known as model averaging or ensemble
modelling (Rojas et al., 2008). The model averaging approach has
shown potential for improving the prediction accuracy compared with
single sensor models in various scales (Malone et al., 2014; O'Rourke
et al., 2016; Xu et al., 2019). Among the different model averaging
methods, Granger–Ramanathan Averaging (GRA) is simple and effi-
cient, and it has been used in several digital soil mapping and spec-
troscopic prediction studies (Malone et al., 2014; O'Rourke et al., 2016;
Chen et al., 2019b).

The objective of this study was to predict soil Cr content using XRF
and vis–NIR spectra and to compare the Cr prediction accuracies using
individual sensors, data integration (i.e., OPA) and model integration
(i.e., GRA).

2. Materials and methods

2.1. Study site and soil sampling

Our study area was located in Fuyang, which is in the southern part
of the Yangtze River Delta, Zhejiang Province, China, and covered an
area of 1831 km2 (Fig. 1). The main soil type in this area is paddy soil, a
kind of Anthrosols in Chinese Soil Taxonomy (Gong et al., 2007). Grid
soil sampling was conducted in the cropland, which was extracted from

Fig. 1. Study area and soil sampling sites. Zhejiang province and Fuyang are labeled with grey and red stars, respectively. Sampling sites are marked with red circles
in the right figure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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land use maps. For cropland located far away from the town, soil
samples were chosen by a contiguous area of 1 km2; for cropland lo-
cated near the town, the grid area was set to about 0.16 km2. A total of
301 sampling sites were selected, and for each site, five individual
topsoil samples (0–20 cm) were collected and composited to form one
representative sample. The soil samples were air-dried, and stones and
roots were removed by hand. The samples were then divided into two
parts, and one part was ground and sieved to<2mm for spectral
measurements and the other part was sieved to<0.15mm for la-
boratory chemical analysis (Technical Specification for soil Environ-
mental monitoring (HJ/T 166-2004), http://kjs.mep.gov.cn/hjbhbz/
bzwb/jcffbz/200412/t20041209_63367.shtml).

2.2. Laboratory chemical analysis

Ground and sieved soil samples were pre-processed by the micro-
wave digestion method using4 mL of HNO3 (65.0%), 2mL of HCl
(36.0%), and 2mL of HF (40.0%). The soil Cr content was then mea-
sured using Liquid chromatography inductively coupled plasma mass
spectrometer (LC-ICP-MS) (NexION 300 X, PerkinElmer, Inc., USA).
Certified soil reference materials (GBW07405, GBW07407, GBW07447,
and GBW07451; National Research Centre for Certified Reference
Materials of China) were used to verify the accuracy of the LC-ICP-MS
method. About 15% of the soil samples were analyzed twice to evaluate
the repeatability of the method.

2.3. Measurement of vis–NIR and XRF spectra

The vis–NIR spectra of the soil samples were recorded using a
Fieldspec® Pro FR vis–NIR spectrometer (PANalytical Inc., formerly
Analytical Spectral Devices-ASD, Boulder, CO) with a spectral range of
350–2500 nm. The instrument has a spectral resolution of 3 nm be-
tween 350 and 1000 nm, and a spectral resolution of 10 nm between
1000 and 2500 nm. The sampling resolution of the spectra is 1 nm.
Before each measurement, a Spectralon® panel with 99% reflectance
was used to calibrate the spectrometer. Then soil samples were mea-
sured using a high–intensity contact probe (PANalytical Inc.) with its
own light source. Three random measurements were scanned at dif-
ferent positions in a petri dish (10 cm in diameter and 1 cm high). At

each measurement, the instrument recorded 10 internal scans for a
satisfactory signal-to-noise ratio. A total of 30 spectra were averaged
into one spectrum to represent the sample.

The XRF spectra were collected using a Thermo Fisher Scientific
Niton™XL2 GOLDD analyser (Thermo Fisher Scientific Inc., Billerica, MA,
USA). The instrument was calibrated against a background for every 30
samples. ‘Soils Mode’ was chosen for the XRF spectral measurements, and
each sample was scanned three times for 90 s each time. Finally, the
average of the three measurements was taken as the spectra of the
sample. The limits of detection (LODs) of XL2 GOLDD analyser for Cr is
70 ppm. After measurement, only 138 samples had Cr concentration
(derived from XRF) among 301 samples, and the remaining samples were
lower than the LODs. Therefore, we did not use the Cr elemental con-
centrations from XRF and only used XRF spectra for this study.

2.4. Spectral pre-processing

The vis–NIR spectra were first reduced to 400–2450 nm to eliminate
the influence of noise and then transformed into absorbance using log
(1/R) (R is the reflectance). The spectra were then smoothed by the
Savitzky–Golay algorithm (SG; Savitzky and Golay, 1964) to further
reduce the noise and enhance the signal, with a window size of 15 and
polynomial of order 2. The XRF spectra were reduced to
0.405–42.105 keV to eliminate the low energy spectra and then
smoothed by SG with a window size of 13 and polynomial of order 2.
Then vis–NIR and XRF spectra were down-sampled to a resolution of
10 nm and 0.15 keV respectively, to reduce redundancy and improve
the modelling efficiency. Before chemometric analysis, the outliers in
the Cr measurements and XRF and vis–NIR spectra were identified
using principal component analysis and boxplots, and the remaining
291 samples were used to conduct the modelling.

2.5. Sensor fusion: outer-product analysis algorithm

Outer-product analysis (OPA) is a method that combines two kinds
of spectra and uses their combinations to emphasize co-evolution of
spectral regions (Jaillais et al., 2005). For example (Fig. 2), in the OPA
process, we have c number of variables for XRF and r number of wa-
velengths for vis–NIR with n number of soil samples scanned using each

Fig. 2. Process of data fusion by OPA (a) and the unfolding process for modelling and refolding of the model results (b) (revised after Jaillais et al., 2005). c is the
number of variables for XRF and r is the number of wavelengths for vis–NIR, n is the number of soil samples.
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instrument. The combinations (vis–NIR⊗ XRF) will produce n outer
product matrices (c rows by r columns) with the multiplied intensities
of the original two domains (Fig. 2a). Then, the c× rmatrix is unfolded
to a c× r vector and this produces a new matrix with n rows and c× r
columns for chemometric analysis, such as partial least squares re-
gression (PLSR). After the chemometric analysis, the related result, such
as variable importance in projection (VIP) value (c× r vector) is folded-
back to the outer-product matrix (c rows with r columns) which will
make it easy to explain and interpret the model (Fig. 2b; Jaillais et al.,
2005; Barros et al., 2008; Terra et al., 2019). The steps of OPA were
implemented in R 3.3.3 (R Core Team, 2017).

2.6. Model construction and assessment

We used the Rank-KS algorithm (Kennard and Stone, 1969; Chen
et al., 2016) to split the calibration and validation data. This involved
sorting the data by the Cr content in ascending order, dividing the data
into six blocks, and implementing the Kennard-Stone algorithm
(Kennard and Stone, 1969) in each block (Xu et al., 2018). Two thirds of
the entire data were chosen as calibration data.

2.6.1. The PLSR algorithm
Among the multiple linear calibration algorithms, PLSR is one of the

most popular algorithms for spectral calibration and prediction (Wold
et al., 1983). This method has the advantage of eliminating the problem
of multiple collinearities of independent variables (Næsset et al., 2005).
In this study, PLSR was performed in the ‘pls’ package (Mevik and
Wehrens, 2016) of R 3.3.3 (R Core Team, 2017). To evaluate the re-
lative importance of each waveband in the projection used in each of
the PLSR models, VIP scores (Wold et al., 2001) were used to determine
important wavelengths used in the PLSR calibration. This was carried
out in PLS_Toolbox 8.5.1 (Eigenvector Research Inc., Wenatchee, WA,
USA) in MatLab (The MathWorks Inc., Natick, MA, USA).

2.6.2. The GRA algorithm
Granger–Ramanathan averaging (GRA) was used to combine the

single sensor prediction results from XRF and vis–NIR. This algorithm
uses ordinary least squares to combine different outcomes (Granger and
Ramanathan, 1984). It fits a multiple linear regression model where
measured values are regressed against the corresponding predictions
derived from the different sensor predictions. We implemented this in R
3.3.3 (R Core Team, 2017).

= + × + ×Y W W WX X( ) ( )o XRF XRF vis NIR vis NIR– – (1)

where Y is the vector with the soil property of interest (i.e., Cr content);
XXRF and Xvis–NIR are the independent variables (prediction outcomes of
XRF and vis–NIR), Wo is the intercept; and WXRF and Wvis–NIR are the
weights of the XRF and vis–NIR outcomes, respectively.

2.6.3. Uncertainty analysis
To improve the robustness of the models and quantify the un-

certainty of the predictions, we used bagging PLSR to conduct the
predictions. Bagging aims to reduce the variance of predictions by ag-
gregating a series of models obtained by resampling (Viscarra Rossel,
2007). We used bootstrap aggregation on the calibration data. This was
completed by repeated random sampling with replacement B=50
times from the original data and produced50bootstrap samples. Each
bootstrap sample has the same size as the original data with some re-
plicates or part of the original data, and the remaining absent data are
out-of-bag samples. The final prediction was the average of the 50
bootstrap models that we sampled. The uncertainties of the predictions
were then calculated by their 95% confidence intervals (95% CIs).

± ×f y( ) 1.96 y (2)

where f y( ) is the mean of the estimation from 50 bootstrap models,
and y is the standard deviation of the estimation from 50 bootstrap

models.

2.7. Data analysis and assessment statistics

To achieve our objectives, we predicted the Cr content using the
XRF and vis–NIR spectra. First, we predicted the Cr content using the
XRF and vis–NIR spectra independently by PLSR and explored their
prediction abilities using the VIP scores. Second, we estimated the Cr
content using OPA fusion of the XRF and the vis-NIR spectra by PLSR
and explored its mechanism using the VIP scores. Third, we estimated
the Cr content using model averaging of PLSR predictions from the XRF
and the vis–NIR spectra by GRA. Finally, we used bootstrapping to
assess the uncertainties of the aforementioned prediction models.

We used a set of assessment criteria to compare the performance of
the model predictions. The Lin's concordance correlation coefficient (ρc)
(Lin, 1989), which measures the precision and bias to determine how
far predicted values deviate from the 1:1 line, was used to assess cov-
ariation and correspondence between the measured and the predicted
values. ρc ranges from −1 to 1. The root mean square error of the
prediction (RMSEP) and the ratio of prediction derivation (RPD) were
used to quantify the accuracy of each prediction.

=
× × ×

+ +
r s s

s s y y
2

( )c
y y

y y
2 2 2 (3)

= = y y
n

RMSEP
( )i

N
i i1

2

(4)

=RPD SD
RMSEP (5)

where y is the observed value and y is the corresponding prediction; y
and y are the means of observed values and predictions, respectively;
SD is the standard deviation; r is the usual Pearson product-moment
correlation coefficient between the observed value and the prediction;
and n is the sample number.

Additionally, we used the standard deviation of differences (SDD) to
compare the spectral prediction error and the chemical measurement
error. According to Peng et al. (2013), RMSE ≤2×SDD is acceptable
for many applications.

=
d d
n

SDD
( )

1
i m

2

(6)

where di is the difference in y between two replicates of sample i, and dm
is the mean of all replicate differences.

A good model has high ρc and RPD values and a low RMSE.
According to Viscarra Rossel and Hicks (2015), ρc value>0.90 in-
dicates the model is excellent; value between 0.80 and 0.90 indicates
the model is good, value between 0.65 and 0.80 indicates the model is
moderate, and value<0.65 indicates the model is poor. If RPD > 2.0,
the model is considered to be excellent. RPD value between 1.4 and 2.0
suggests the model can achieve approximate quantitative predictions,
whereas value<1.4 indicates that the model is very poor (Chang et al.,
2001). The procedure adopted in this study is depicted in Fig. 3.

3. Results

3.1. Soil Cr content

According to the Technical Specification for Soil Environmental
Monitoring (HJ/T 166-2004) released by the Ministry of Ecology and
Environment of the People's Republic of China (http://kjs.mep.gov.cn/
hjbhbz/bzwb/jcffbz/200412/t20041209_63367.shtml), the maximum
permissible relative deviations of the soil Cr measurement are dependent
on the Cr content range in the soil (Table 1). The Cr content of all the soil
samples measured in this study were between 10 and 100mg kg−1 of soil
and the maximum permissible relative deviation was±10%. All the
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relative deviations of the measurements were lower than 10%, which
confirmed the validity of the chemical analysis (Fig. 4).

The distributions of the calibration and validation datasets were
similar to those of the whole dataset, which indicated that the split
datasets were representative of the whole dataset. All datasets exhibited
approximately normal distributions with skewness values close to 0
(Table 2). The Cr content varied between 10 and 80mg kg−1 of soil
with a median of about 45mg kg−1of soil and mean of about
43mg kg−1 of soil for the whole dataset.

3.2. Spectroscopic modelling of Cr content

Overall, soil Cr content was well predicted with confidence in all the
methods tested in this study. A comprehensive list of the prediction
accuracies of calibration and validation using XRF, vis–NIR, OPA, and
GRA is presented in Table 3. For the single sensor assessment, XRF
performed better than vis–NIR. The ρc values were 0.83 and 0.80 for the
validation samples using the XRF and the vis-NIR spectra, respectively.
The RPD values for the XRF and the vis-NIR spectra were 1.75 and 1.63,
respectively. Among the single and combined sensor assessments, OPA
fusion of XRF and vis–NIR performed the best with ρc of 0.90 and RPD

of 2.30 for the validation dataset. The GRA model performed better
than the single sensors and was comparable to the OPA fusion with a ρc
of 0.88 and RPD of 2.13 for the validation dataset.

Fig. 5 shows the prediction performances of the four models con-
structed using single sensors and sensor fusion, along with their predic-
tion uncertainties. Among these models, the prediction model using OPA

Fig. 3. Flowchart of the chemometric analysis.

Table 1
The maximum permissible relative deviation of two samples in soil monitoring
according to the Technical Specification for soil Environmental monitoring
(HJ/T 166-2004).

Content range (mg kg−1) The maximum permissible relative deviation (%)

> 100 ±5
10–100 ±10
1.0–10 ±20
0.1–1.0 ± 25
<0.1 ± 30

Fig. 4. Cr content in the soil samples including the results of repeated mea-
surements and their relative deviation. The red and green cross are the result of
first and second measurements, respectively and the blue bar is the relative
deviation of the two measurements. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)
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fusion performed the best. The ρc value for the validation dataset by the
OPA approach was 0.90, with 95% CIs from 0.88 to 0.93, and the RPD
value was 2.30 with its corresponding 95% CIs between 1.91 and 2.68.
The second-best performance was achieved with the GRA model with a ρc
value of 0.88 (95% CIs between 0.85 and 0.90) and RPD of 2.13 (95% CIs
between 1.90 and 2.37). These results clearly showed excellent agree-
ment between the measured Cr content and the OPA and GRA predic-
tions. Prediction using the XRF spectra showed good agreement with the
Cr content. For example, the ρc and RPD values of the prediction were
0.83 (95% CIs from 0.78 to 0.89) and 1.75 (95% CIs from 1.42 to 2.08).

For vis–NIR spectra, the ρc and RPD values were 0.80 and 1.63, respec-
tively. Their 95% CIs were from 0.76 to 0.84 and 1.38 to 1.87, respec-
tively. These results indicated relatively weaker performance of vis–NIR
spectra than XRF spectra in predicting soil Cr content.

Chemical measurement errors and spectral prediction errors were
compared by calculating SDD of the replicated chemical measurements
and the RMSEP of the spectra (Table 4). The RMSEP of OPA and GRA
were 6.80mg kg−1 and 7.40mg kg−1, respectively, and were<2
×SDD (8.46mg kg−1). This indicated that the predictions using OPA
and GRA were acceptable for this applications. By contrast, the RMSEP
of single sensor predictions were larger than 2× SDD and questioned
the validity of the approaches for this application. The predictions
obtained through fusion of data from multiple sensors were superior to
those obtained using data from single sensors.

3.3. Variable importance projection analysis for the three approaches

The VIP scores for PLSR models of the XRF and the vis–NIR spectra
are shown in Fig. 6. For XRF, there were high VIP scores of>1.0 at
around 5.5–7.0, 12.9–14.5, and 15.0–17.0 keV. Especially for the energy
around 5.9 and 16.0 keV, the VIP scores were larger than 3.0. There were

Table 2
Descriptive statistics of Cr (in mg kg−1) measured by ICP-MS in the laboratory.

Dataset N Min. 1st Q. Median Mean 3rd Q. Max. Skewness

All 291 9.865 18.82 44.84 43.04 54.36 80.64 −0.24
Calibration 194 9.865 18.82 44.84 43 54.42 80.07 −0.28
Validation 97 13.05 18.81 45.47 43.13 54.25 80.64 −0.17

Table 3
Comparison of prediction accuracy of different methods (all values are the
mean of 50 bootstraps).

Approach Calibration Validation

ρc RMSE RPD ρc RMSE RPD

XRF 0.95 4.79 3.26 0.83 8.80 1.75
Vis–NIR 0.94 5.20 2.96 0.80 9.47 1.63
OPA 0.98 3.27 4.65 0.90 6.80 2.30
GRA 0.96 3.98 3.86 0.88 7.40 2.13

Fig. 5. Performance for validation of four models (a) XRF model, (b) vis–NIR model, (c) OPA model (d) GRA model. The light grey bars represent the 95% confidence
intervals derived from bootstrapping and the dotted line shows the 1:1 relationship. The values in parentheses represents 95% confidence intervals (CIs).

Table 4
comparison between chemical measurement error and spectra prediction error.

Index Instrument Value (mg kg−1)

SDD ICP_MS 4.23
RMSEP XRF 8.80

Vis–NIR 9.47
OPA 6.80
GRA 7.40
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small peaks at 3.5, 5.5, 8.7, 17.2, 18.0, and 32.0 keV with VIP scores
around 1.0. For vis–NIR, VIP scores of>1.0 were observed at around
470, 517–673, 1379–1424, 1891–1967, 2058–2144, 2160–2174,
2184–2214, 2222–2231,and 2331–2358 nm. Among these, large peaks
were observed at around 470, 577, 1413, 1910, 2120, 2166, 2206, 2226,
and 2344 nm. Unlike the single instruments results, the VIP scores of
OPA fusion using both XRF and vis-NIR spectra need to be presented in
three-dimensional color contour graphs (Fig. 7). The VIP scores for the
XRF energies around 5.5–7.0, 12.9–14.5, and 15.0–17.0 keV were larger
than 6.0 for almost all the wavelengths of the vis-NIR spectra. The
vis–NIR had large VIP scores around 1410, 1910, 2200, and 2300 nm and
these intersected with the energies of XRF. These high VIP scores of the
OPA were higher than the VIP scores of the individual XRF and vis–NIR
spectra. The highest VIP scores were>9. Similarly, in the OPA matrix,
the XRF also showed larger VIP scores than vis–NIR, perhaps because of
the direct relationship with the Cr content.

4. Discussion

4.1. Predictions using a single sensor

As a suitable alternative to traditional analysis for the measurement
of soil heavy metal content, XRF has gained increasing popularity,
especially for the measurement of Pb, Cu, Zn, Cd, and Cr (Rouillon and
Taylor, 2016). And previous study mainly used XRF elemental data,
while when the heavy metal contents were in low concentrations, the
elemental data would be failed to be detected because of LODs.

According to O'Rourke et al. (2016), compared with XRF elemental
concentrations, XRF spectra was more effective for determination of
elements present in low concentrations. Thus, in these cases, we could
consider to use the raw spectra of XRF to develop spectral calibration
models. In this study, we used XRF spectra to predict soil Cr content and
obtained moderate to good results (Table 3 and Fig. 5). These results
were comparable with those from previous studies by Moros et al.
(2010) and Hseu et al. (2016). XRF measures the energy levels of X-rays
emitted from Cr, which has a characteristic binding energy (McLaren
et al., 2012). Our results were also in line with previous studies (Moros
et al., 2010; McLaren et al., 2012) that indicated that the absorption
energy of Cr was mainly located between 5–7 keV (Fig. 6). High VIP
scores at 12.9–14.5 and 15.0–17.0 keV indicated that prediction may be
attributable to the influences of other elements. There was large un-
certainty in the prediction of Cr content using XRF spectra (Fig. 5).
Some previous studies also reported this issue. These may be attribu-
table to large differences in the sites and their Cr content. For example,
Caporale et al. (2018) predicted Cr content using XRF in two case
studies and reported R2 of 0.95 and 0.54.

The prediction of Cr content using vis–NIR spectra was slightly
worse than the prediction using XRF spectra (Table 3 and Fig. 5). This
was on par with previous research on determination of soil organic and
inorganic elements using XRF and vis–NIR spectra (O'Rourke et al.,
2016). However, the prediction uncertainty using the vis–NIR spectra
was slightly smaller than that of the XRF spectra. Soil heavy metals are
often bound to soil organic matter and clay minerals (Choe et al., 2008;
Chen et al., 2015; Shi et al., 2016), which are related to carbonates,
hydroxides, or oxides that have spectrally active components in the
vis–NIR region (Stenberg et al., 2010; Araujo et al., 2014). For example,
in the visible region, the high VIP scores for Cr were mainly in
the470–580 nm region (Fig. 6), which is related to soil organic matter
(Shi et al., 2015; Xu et al., 2018). Another region of high VIP scores was
at around 1413 nm and 1910 nm, which is mainly related to OeH
bonds in water or clay minerals. High VIP scores at around 2120, 2166,
2206, 2226, and 2344 nm were associated with Al–OH and OeH in clay
minerals, such as kaolinite, montmorillonite, and illite (Viscarra Rossel
and Behrens, 2010; Song et al., 2013).

4.2. Predictions using sensor fusion

The prediction using OPA fusion was better than the predictions
from the single sensors in terms of accuracy and uncertainty. This in-
dicates that the OPA fusion combining XRF and vis–NIR spectra is an
efficient approach for Cr content prediction (Table 3 and Fig. 5).
Compared with previous studies that used OPA to fuse vis–NIR and mid-
IR spectra (Cecillon et al., 2012; Terra et al., 2019), this study achieved
an obvious improvement in fusing XRF and vis–NIR spectra for Cr
prediction. This may be because we used different energies for the
spectra, which meant the OPA made full use of their distinct natures
and complementary information. Moreover, the distribution of VIP
scores for the fused spectra had a similar trend to those of the individual

Fig. 6. VIP scores of the Cr predictions for single sensors, (a) XRF and (b) vis–NIR.

Fig. 7. VIP scores of the Cr predictions for OPA fusion. X-axis represents the
wavelengths of vis-NIR spectra and the Y-axis represents the energy of XRF
spectra.
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spectra, but the XRF spectra played a more important role than vis–NIR
in the PLSR model (Fig. 7). Thus, compared with a simple concatena-
tion of different spectra, OPA expands the possibility of finding spectral
co-evolutions that are highly associated with Cr (Barros et al., 2008;
Terra et al., 2019). The OPA of XRF and vis–NIR spectra provides an
effective and stable approach for Cr prediction.

Model averaging improves the model prediction accuracy more
consistently than individual sensor models (Malone et al., 2014; Xu
et al., 2019). Previous studies have proved that GRA is an efficient and
simple method that only requires fitting to a simple linear regression
model (Malone et al., 2014; O'Rourke et al., 2016). Therefore, we used
GRA to conduct model averaging to realize sensor fusion. The results
were also in line with previous studies (Table 3 and Fig. 5). XRF pre-
diction was preferred over vis–NIR for Cr prediction (Table 5), and this
was comparable to the results from O'Rourke et al. (2016) (Fig. 7).
Compared with the predictions using individual sensors, the predictions
using OPA and GRA provided more satisfactory results (for ρc, RPD,
RMSE, and SDD) (Table 4 and Fig. 5). Overall, the sensor fusion of vis-
NIR and XRF with OPA and GRA provided similar results and can be
recommended for Cr estimation.

Although it takes extra time and is costlier, sensor fusion approach
provides more accurate and stable prediction model for soil properties
(Table 3 and Fig. 5) (Wang et al., 2015; O'Rourke et al., 2016; Xu et al.,
2019). With rapid technical development, more advanced and afford-
able soil sensors will be available in future. Recently, there have been
some attempts to develop soil sensing platforms, such as the soil con-
dition analysis system (Viscarra Rossel et al., 2017), and the project
‘I4S-Integrated system for site-specific soil fertility management’. These
multi-sensor platforms aim to detect various soil properties simulta-
neously, and sensor fusion has high potential to improve the stability of
stable estimates. In future study, we will try to use the sensor fusion
approach to estimate other soil properties or element content.

5. Conclusions

In overcoming challenges associated with the traditional measure-
ments of heavy metals, including Cr, soil spectroscopy has attracted
tremendous attention. Although the technology has developed rapidly,
spectral data processing still presents challenges, particularly, when
complementary information from multiple sensors is used to improve
the predictions. In this study, we used XRF and vis–NIR individually
and in combination to predict soil Cr content in paddy soils from China.
We used two sensor fusion approaches, OPA and GRA, to combine the
data from the XRF and vis-NIR for the prediction of soil Cr content. For
single sensor, XRF had better prediction accuracy but larger prediction
uncertainty than vis–NIR. Among the single and combined sensors, OPA
fusion of XRF and vis–NIR spectra provided the best prediction with the
largest ρc and RPD and the smallest RMSE and uncertainty. Sensor fu-
sion by GRA was comparable to OPA fusion, and the OPA and GRA gave
acceptable SDD values. Thus, this study provides a recommendation to
use either OPA or GRA fusion of XRF and vis–NIR data for the predic-
tions of soil Cr content.
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