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A B S T R A C T

Accurate digital soil maps of soil organic matter (SOM) are needed to evaluate soil fertility, to estimate stocks,
and for ecological and environment modeling. We used 5982 soil profiles collected during the second national
soil survey of China, along with 19 environment predictors, to derive a spatial model of SOM concentration in
the topsoil (0–20 cm layer). The environmental predictors relate to the soil forming factors, climate, vegetation,
relief and parent material. We developed the model using the Cubist machine-learning algorithm combined with
a non-parametric bootstrap to derive estimates of model uncertainty. We optimized the Cubist model using a 10-
fold cross-validation and the best model used 17 rules. The correlation coefficient between the observed and
predicted values was 0.65, and the root mean squared error was 0.28 g/kg. We then applied the model over
China and mapped the SOM distribution at a resolution of 90×90m. Our predictions show that there is more
SOM in the eastern Tibetan Plateau, northern Heilongjiang province, northeast Mongolia, and a small area of
Tianshan Mountain in Xinjiang. There is less SOM in the Loess Plateau and most of the desert areas in northwest
China. The average topsoil SOM content is 24.82 g/kg. The study provides a map that can be used for decision-
making and contribute towards a baseline assessment for inventory and monitoring. The map could also aid the
design of future soil surveys and help with the development of a SOM monitoring network in China.

1. Introduction

Soil organic matter (SOM) is an important component of soil that helps
to determine crop yield and carbon sequestration (Manlay et al., 2007). It
is a key property that affects soil quality and the assessment of soil re-
sources. The amount of carbon stored in soil is three times that in the
atmosphere (Post and Kwon, 2000), and thus, small losses of soil carbon to
the atmosphere can have a significant impact on the overall emissions of
greenhouse gases and the greenhouse effect (Raich and Potter, 1995).

Soil in China, like elsewhere, is subject to complex soil forming
environments, with persistent soil erosion and degradation, and long-
term intensive farming. As a consequence, the spatial distribution of
soil properties is very heterogeneous and existing soil property maps
have considerable uncertainty. There is a growing demand for fine-re-
solution soil property maps for applications in environmental modeling
and monitoring. Traditional polygon-based soil maps are less useful for
these purposes because they do not adequately characterize the spatial

variation of continuous soil properties. For instance, there is a need for
precise spatially explicit estimates of SOM at the national scale for
providing baselines for monitoring and to inform national greenhouse
gas inventories (Viscarra Rossel et al., 2014).

Dokuchaev firstly developed a scientific classification of soils,
methods for soil mapping and established the foundation for the study
of both soil genesis and soil geography (Buol et al., 2011). Later Jenny
proposed the well-known State Factor Equation of soil, where soil is
described as a function of CLimate, Organisms, Relif, Parent material
and Time, referred to as CLORPT (Jenny, 1941). McBratney et al.
(2003) and Scull et al. (2003) reviewed methods for soil mapping which
they defined as a spatial soil information system using field and la-
boratory observational methods, coupled with spatial and non-spatial
soil inference systems. Lagacherie and McBratney (2007) formalized
the “SCORPAN” framework of McBratney et al. (2003) and in a col-
lection of manuscripts described “digital soil mapping”. Since then,
much of the work on soil mapping with linear regression, geostatistical
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methods, and data mining methods have fallen under the “digital soil
mapping” umbrella (Adhikari et al., 2014; Chen et al., 2018; Grunwald,
2009; McBratney et al., 2003; Sun et al., 2012; Viscarra Rossel and
Chen, 2011; Zhou et al., 2016).

In the last decade, much attention has been focused on soil carbon
storage at the national scale. In China, most researchers have used
classification statistics and interpolation methods to obtain average soil
organic carbon content, soil depth, and other information (Pan, 1999;
Wang et al., 2000; Wu et al., 2003; Xie, 2004; Yu et al., 2005). However,
due to the inaccuracies of the input point data, the studies have produced
diverse results. Other studies have used statistical models to map the
spatial distribution of soil organic carbon in China, such as multiple re-
gression combined with high accuracy surface modeling (HASM) and
neural networks (Li et al., 2010; Q.Q. Li et al., 2013), and land surface
modeling (Shangguan et al., 2013). But the spatial resolution of these
studies is relatively coarse (>1×1 km). Large area, country, con-
tinental and global scale mapping at a fine resolution is now a major
research emphasis that will allow for a better understanding of the soil
resource and our environment (Arrouays et al., 2014).

Our aim here was to use a machine-learning model with data from
the second national soil survey of China and covariates that represent
the environmental factors, to map the spatial distribution of topsoil
(0–20 cm) organic matter in China and its uncertainty at 90×90m
spatial resolution.

2. Materials and methods

2.1. Collection and processing of soil profile data

The study used a dataset of 5982 soil profiles derived from the
second national soil survey of China (SNSSC), which was undertaken in
the 1980s and is mainly recorded in the Soil Series of China (National
Soil Survey Office, 1993, 1994a, 1994b, 1995a, 1995b, 1996) and the
Soil Series of Provinces (National Soil Survey Office, 1998). The carbon
determination was carried out by rational wet combustion (Pan et al.,
2004). The soil data covers most geographical regions of China and is
the most detailed soil survey available at the national scale.

The soil profiles were sampled and analyzed by genetic horizons,
and thus the depth intervals for each soil profile are inconsistent. As
variation in SOM down a profile is usually continuous, we used equal-
area splines (Ponce-Hernandez et al., 1986; Bishop et al., 1999; Malone
et al., 2009) to harmonize the SOM content of the topsoil, which we
defined as the 0–20 cm depth layer. To fit the splines to the SOM values
in the profiles we tested different tuning parameter values, λ: 10, 1, 0.1,
0.01, 0.001, 0.0001, and 0.00001. We found that λ=0.01 produced
the best fits with the smallest root mean square error (RMSE). The
splines were fitted to a maximum depth of 1m, and we aggregated the
spline predictions of SOM over the 0–20 cm to represent topsoil. Fig. 1
displays SOM depth function curves for three random soil profiles under
different land uses.

The soil profiles from the SNSSC lack precise geographical regis-
tration and have no data on latitude and longitude. However, they do
have detailed sampling location information that can be accurate to the
villages, fields. To verify the spatial location accuracy of the digitized
soil profiles, we compared elevation, mean annual precipitation, and
mean annual temperature (below) recorded in each soil profile with
data extracted from a high-resolution digital elevation model (DEM)
and digital climate map using linear regression analysis. Coefficients of
determination (R2) for both elevation and temperature were larger than
0.90, and it was 0.80 for precipitation (Fig. 2). These results confirmed
that the spatial accuracy of the digitized soil profiles was adequate for
our study. The spatial distribution of the profiles is shown in Fig. 3.

Statistical analysis of the dataset showed that the distribution of
SOM was skewed, with a mean of 24.82 g/kg, maximum of 560.1 g/kg
for a peat soil type, found in Ganzi in Sichuan Province, minimum of
0.6 g/kg for a clay soil type found in Gaolan in Gansu Province. SOM of

topsoil showed strong spatial variation, with a coefficient of variation
(CV) of 140%, which is mainly attributed to diverse soil types, land
uses, ecosystems, etc., at the national scale. To ensure the data is nor-
mally distributed, the SOM data was log-transformed prior to modeling
with logs to the base 10.

2.2. Environmental covariates

Following soil formation theory, a number of environmental cov-
ariates were chosen for our modeling. They include covariates that
represent terrain, climate, biota, geology, and human activities
(Table 1). Terrain information was derived from the 90-m shuttle radar
topographic mission (STRM) DEM. All terrain attributes, including
elevation, slope, aspect, curvature, slope length (LS), slope steepness,
mass balance index (MBI), terrain ruggedness index (TRI), topographic
wetness index (TWI), and multiresolution index of valley bottom flat-
ness (MrVBF) were derived from the DEM with the System for Auto-
mated Geoscientific Analyses (SAGA) geographic information system
(GIS) (http://www.saga-gis.org).

Data on daytime land surface temperature (LST_D), nighttime land
surface temperature (LST_N), normalized difference vegetation index
(NDVI), evapotranspiration (ET), and net primary productivity (NPP)
were derived from the Moderate Resolution Imaging Spectroradiometer
(MODIS) (Justice et al., 1998). The resolution of different data is shown
in Table 1.

Monthly precipitation products were obtained from the Tropical
Rainfall Measuring Mission (TRMM), which measures tropical and
subtropical precipitation (http://trmm.gsfc.nasa.gov/data_dir/data.
html).These data were at a coarse resolution (0.25° resolution)
(Huffman et al., 2007) and so we downscaled it using a geographically
weighted regression (Ma et al., 2017) to derive 90-m resolution mean
annual precipitation that we could use here.

Daily air temperature data for the period 1951–2014 from 754 base
meteorological observation stations distributed throughout mainland
China were used to calculate annual mean temperature (http://cdc.
nmic.cn/home.do). Mean annual temperature maps were produced at
90-m resolution using a regression-kriging approach with elevation,
latitude, and longitude as the auxiliary variables.

Annual mean solar radiation data (1950–1980) were derived from
the National Earth System Science Data Sharing Infrastructure (http://
www.geodata.cn). Land use and land cover data were obtained from the
Resource and Environment Data Center of the Chinese Academy of
Sciences (http://www.resdc.cn/).

These environmental covariates (LST_D, LST_N, ET, NDVI, NPP and
Solar Radiation) with resolution coarser than 90m were resampled to
90-m using bilinear method in ArcGIS 10.0.

2.3. Digital soil mapping

2.3.1. Modeling
The sites recorded covariates (precipitation, temperature, and ele-

vation) as well as other environmental covariates at the sampling lo-
cations are easy to obtain by overlaying the sampling locations with the
covariates maps and can be used as predictors from which to predict
soil properties such as SOM. We took advantage of this by setting up a
model in the form of a decision tree at the sites for which we had data
and then using the model to predict SOM elsewhere. Decision trees have
become one of the most commonly used data mining algorithms and are
ideally suited for dealing with complex nonlinear relationships and
missing values (Quinlan, 1992).

We used the algorithm that is implemented in the ‘cubist’ library
(Kuhn et al., 2014) in the R software (R Core Team, 2013). Cubist uses
conditional functions to build rules that partition the data into regions
that are similarly defined by the characteristics of the predictor vari-
ables. If the condition is true, then an ordinary least-squares linear
model predicts the response. If the condition is false, then the rule
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defines the next node in the tree. The sequence if, then, else is repeated.
The result is that the regression equations, although general in form, are
local to the partitions and have smaller errors smaller than other
methods. The advantage of conditional rules is that they enable dif-
ferent linear models to capture the local linearity in different parts of
the landscape, as represented by the predictor variable space, leading to
smaller, more interpretable trees and better prediction accuracy than
regression trees. Cubist has been extensively used in soil science to

model and map soil properties (e.g. Bui et al., 2009; Henderson et al.,
2005; Viscarra Rossel, 2011), to downscale remote sensing data (Ma
et al., 2017), and to model soil sensor data and soil spectra (Viscarra
Rossel and Webster, 2012).

We used Cubist models to make predictions at the notes of the 90m
grid. But, there are errors in the predictions from the Cubist model, and
we quantified them by analyzing the model residuals. These residuals
were autocorrelated. To account for them, and to improve prediction,

Fig. 1. Example of soil organic matter (SOM) depth function curves for three different land uses. Horizontal bars represent measured soil organic matter at different
soil horizons, continuous line through horizons represents a fitted spline.

Fig. 2. Comparison of temperature, precipitation, and elevation measured in the in original record and against that extracted from remote sensing data.
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we used ordinary kriging to also predict the residuals at the nodes of the
90m grid. The final Cubist-kriging SOM predictions summed the pre-
dictions from Cubist and the predicted residuals.

2.3.2. Bootstrapping
The non-parametric bootstrap (Efron and Tibshirani, 1993) is used to

assess the uncertainties of the Cubist modeling. We bootstrapped the
modeling, as described above, 50 times (B=50) so that at each point of
the 90m grid, we generated 50 realizations of each of the final Cubist-
kriging predictions of SOM. We averaged the 50 Cubist-kriging predictions
to derive the mean estimates of SOM and we computed the uncertainty by
adding the bootstrap variance of the Cubist predictions and the average
kriging variances of the residuals (Viscarra Rossel et al., 2015). For clarity,
a summary of the spatial modeling is presented in Fig. 4.

Because we modelled the data as logs, we then back-transformed the
Cubist-kriging predictions of SOM by accounting for the variances in

the data as follows:

  = × + ×SOM l SOM l SOMexp{ln(10) og ln(10) 0.5Var[ og ]} (1)

where logSOM is the average Cubist-kriging prediction from the 50
bootstraps on the log scale and its variance is expressed as l SOMvar[ og ].
Cox's method proposed by Zhou and Gao (1997) was used to calculate
and back-transform 95% confidence intervals. It is expressed as:

  ⎧
⎨
⎩

× + × ± +
−

⎫
⎬
⎭

−l SOM Z
B

exp ln(10) ( og ) ln(10) V
2

V V
2(B 1)α1 /2

2

(2)

where V is the summation of the variance in the Cubist-kriging pre-
dictions and the average kriging variances of the residuals (σ2), Z1−α/2
is the standard normal deviate for the chosen probability α=0.05.

 = +SOMV Var(log ) σCK
2 (3)

Fig. 3. Soil sample distribution and topsoil (0–20 cm) organic matter content, different colors representing different concentrations of SOM in topsoil. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Environmental covariates and their resolution.

Theme Surrogate variablea Resolution Theme Surrogate variable Resolution

Climate Annual mean temp, °C 90m Terrain DEM, m 90m
LST_D, °C 5 km Slope 90m
LST_N, °C 5 km Aspect 90m
Potential evapotranspiration, mm 1 km Curvature 90m
Rainfall, mm 90m MBI 90m
Radiation 1 km TRI 90m

Biota and vegetation Net primary productivity, kg C·m−2 1 km TWI 90m
NDVI 250m LS 90m

Soil Soil land use types MrVBF 90m

a Key to terms: LST_D, daytime land surface temperature; LST_N, nighttime land surface temperature; NDVI, normalized difference vegetation index; DEM, digital
elevation model; MBI, mass balance index; TRI, terrain ruggedness index; TWI, topographic wetness index; LS, slope length; MrVBF, multiresolution index of valley
bottom flatness.
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We assessed the uncertainties of the CK prediction, which can be
defined as follows:

= − SOMSOM (T1 T2)/uncertainty (4)

where T1 and T2 are the upper and lower limits of 95% confidence

intervals calculated in Eq. (2), respectively. We calculated the un-
certainty of our estimates as the range of the 95% confidence intervals
divided by their mean.

2.3.3. Model selection and validation
Models with a 2:1 training to test data split were implemented. Data

from the 5982 soil profiles were randomly split into training (3982) and
independent validation dataset (2000). We used the training set to
perform 10-fold cross validation to test different models with up to 20
rules in each. We selected the model that produced the highest accuracy
and independently assess the performance of the model with the vali-
dation data set. Finally, we refitted the best model with all 5982 ob-
servations to predict the “unknown” SOM at the nodes of the 90m grid.

We used a range of statistics to assess the quality of the predictions.
The Pearson correlation coefficient (r) was used to assess variation and
correspondence between the predictions and original data, the root
mean squared error (RMSE) to quantify the inaccuracy of the predic-
tions, the mean error (ME) to assess bias, and finally the standard de-
viation of the error (SDE) to assess the precision of the predictions.

3. Results and discussion

3.1. Cubist spatial modeling

Climatic, ecological, and soil properties vary enormously at the
national scale in China, resulting in high spatial variability of SOM and
a complex correlation between soil organic matter and environmental
covariates. In this study, we consider environmental covariates in each
rule as variables that capture local variations of SOM in the different
landscapes. Therefore, the relationship between environmental cov-
ariates and SOM was used to establish rule sets and independent models
based on correlation to predict the SOM of corresponding soil landscape
units. We tried a different number of rules and found that for this study,
the prediction accuracy of the SOM model increases with the number of
model rules. As shown in Fig. 5, the correlation coefficient reaches 0.62

Fig. 4. Workflow of soil organic matter modeling and uncertainties assessment.

Fig. 5. Contribution rate of each environmental
factor in different rule sets and corresponding pre-
diction error associated with Cubist modeling. Key to
variables: LST_D, daytime land surface temperature;
TRMM, monthly precipitation from the tropical
rainfall monitoring mission; DEM, digital elevation
model; MrVBF, multiresolution index of valley
bottom flatness; Temp, temperature; ET, evapo-
transpiration; NDVI, normalized difference vegeta-
tion index; LST_N, nighttime, land surface tempera-
ture; LS, slope length; TWI, topographic wetness
index; TRI, terrain ruggedness index.
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when the number of rules is 17, and the RE reaches 0.72. Model ac-
curacy appears to level off above 17. To ensure both model accuracy
and rule simplification, we set the number of rules in the Cubist model
at 17.

Of the 17 environmental covariates, 15 were used in SOM modeling.
Fig. 5 shows that in the Cubist SOM modeling process, the contribution
rates of LST-D and TRMM are 96% and 90%, respectively, followed by
LST-N at 75% and temperature at 72%. Contribution rates of DEM,
MrVBF, ET, and NDVI are 60%, and those of the remaining factors
(Radiation, Slope, LS, TWI, Curvature, TRI, and Aspect) are 47, 41, 12,
12, 12, 8, and 4%, respectively.

3.2. Construction of the Cubist rules

The Cubist model can reclassify and model the study area data by
establishing different rule sets based on the characteristics of environ-
ment variables. Viscarra Rossel et al. (2014) showed how the rulesets of
the Cubist model could be mapped to provide a better interpretation of
the local drivers (determined form the linear models within each of the
mapped rulesets) of SOC at the continental (Australian) scale. Viscarra
Rossel and Bui (2016) used a similar mapping of the Cubist rulesets to
better interpret the drivers for soil phosphorus in Australia. The
dominant environmental factors influencing SOM vary in different re-
gions. The Cubist rule set contained 17 individual linear models. The
rule regions established by the Cubist algorithm (Fig. 6) are consistent
with climatic zones in the Tianshan, Altai, and Kunlun Mountains in
Xinjiang province. The rules are relatively consistent within similar
regions, such as northeastern China and the Tibetan Plateau.

Soil is complex and SOM is affected by the interactions of numerous
variables. Huang et al. (2018) pointed that the correlation between SOC
and soil temperature can be positive or negative across the world. Large
areas in China are characterized by a heterogeneous mix of multiple
rules, which reflects the real-world situation. This is especially clear in

the humid region of south China, due to the changeable terrain and
variable coastal rainfall. The NDVI and the topographical characteristic
were the two most important factors in the semi-humid region and the
semi-arid region, which are mainly covered by vegetation (especially
Tibet plateau and northeast China region). And there are complex ter-
rain changes in two climate regions. The most important factor was
NDVI in the desert arid region, where the poor vegetation coverage.

3.3. Digital SOM map

The spherical model is used for ordinary kriging to interpolate the
residuals. The fitted range of spatial correlation of residual was about
12.3 km. The nugget value in the study is about 0.0072, whereas the sill
is 0.07 (nugget to sill ratio was 10.3%). Due to the small range, thus the
accuracy improvement is not significant in the western region, but in
the eastern intensive sampling region, the accuracy has improved.
Chien et al. (1997) pointed that the ratio of nugget to sill can be used as
a criterion to classify the spatial dependence of properties. If this ratio
is< 25%, the variable has strong spatial dependence, for 25%–75%, it
has moderate spatial dependence, and for> 75%, only weak spatial
dependence. So the residual variation showed a strong spatial structure.

The model predictive value and the kriging prediction of residuals
were added to give our final predictions of the SOM, as in Fig. 4. The
prediction accuracy in terms of r increased from 0.62 to 0.65 when
considering the residual spatial variation in CK. The spatial distribution
of SOM in top soil (0–20 cm depth) predicted by the model (Fig. 7) shows
the higher SOM in southwest and northeast of China than in the north-
west. Specifically, most of the higher values are located in eastern Tibet,
the Three Rivers Watershed, western Sichuan, northern Heilongjiang,
northeastern Inner Mongolia, and a small area of the Tianshan Mountains
in Xinjiang province. Commonly, these areas are characterized by a cool
climate and high percentage of forest cover. Lower SOM is mainly found
in hilly areas of the Sichuan basin, the Loess Plateau, and most desert

Fig. 6. Rule regions derived from the Cubist model of SOM.
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areas in northwest China, which are characterized by relatively high
temperature and poor vegetation cover. SOM content gradually de-
creases from southeast to northwest in Tibet and Sichuan, which is
consistent with the transition from humid, to sub-humid, semi-arid, and
arid climates. The phenomenon indicates that the pattern of SOM content
results from the distinct hydrothermal condition of the Tibet region. The
Songliao and Sanjiang plains in northeast China are one of the world's
three major areas of black soil (chernozem). The cold and humid climate
contributes to the rich SOM content of black soil. Under the dense forest
cover in the zone of high SOM in Tibet and northeast China, SOM is
promoted by abundant standing litter, while the cold environment means
that the organic matter decomposition rate is low, which contributes to
SOM accumulation. According to the formula of carbon density, we know
that both bulk density and SOM are the key attributes for calculating soil
organic carbon storage, and the bulk density values generally have a
significant correlation with the SOM. However, in most of the soil da-
tabases, the bulk density values are extremely scarce, so the map of SOM
content plays a very important role in the later calculation of soil organic
carbon stocks.

The spatial distribution of SOM in our study is largely consistent
with the distribution of SOCD as estimated by Xie (2004) and Yu et al.
(2005) using statistical methods. Our results are also broadly consistent
with Q.Q. Li et al. (2013) estimate of SOC in topsoil in China using an
artificial neural network, and the Harmonized World Soil Database
(HWSD) of the Food and Agriculture Organization of the United Na-
tions. Results of the latter two studies show the same patterns of high
and low SOM in Eastern Tibet, northern Heilongjiang, northeastern
Inner Mongolia, and a small area of the Tianshan Mountains. Our es-
timates of SOM in China using the Cubist algorithm fall in between the
other two studies, with those of Q.Q. Li et al. (2013) higher and the
HWSD lower. Two previous national maps of SOC in China, produced
by Q.Q. Li et al. (2013) and Shangguan et al. (2013), show a low spatial
resolution of 1 km.

3.4. Verification of model accuracy

The original SOM data presented a skewed distribution, therefore,
before construction of the Cubist model, the data was log-transformed
to satisfy the normal distribution. The statistics of model accuracy in
terms of r, RMSE, ME and SDE were shown in Fig. 8. China has a larger
land area and greater spatial climatic and topography variability, in-
cluding the Tibet Plateau which has been termed the ‘roof of the world’.
China also has more latitudinal variation in climate. Different soil

Fig. 7. Prediction map of SOM in topsoil (0–20 cm depth).

Fig. 8. Scatter plot of predicted against measured SOM values. Key to terms:
CLs, confidence intervals; RMSE, root mean squared error.
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properties analysis methods and the lack of standardized sampling
methods are sources of error. These sophisticated factors make it dif-
ficult to build a very accurate prediction model of SOM in China. With
the limited data available, our estimates suggest the model has a level
of predictability that has a practical significance for large scale digital
soil mapping.

3.5. Spatial distribution of uncertainty

The analysis of accuracy and quality control of spatial data are
frontline problems in the earth sciences, but research on uncertainty in
mapping is relatively rare in China. The uncertainty problem is un-
avoidable and widespread in the process of digital soil mapping and
decision-making based on spatial data. Analyzing and evaluating un-
certainty helps data users to understand its existence, and it also can
help to improve decision quality and, thus, improve the accuracy and
reliability of the decision. Our study is the first to assess the spatial
distribution of uncertainty in the estimation of SOM at the national
scale in China, and, as such, it is expected to provide a baseline re-
ference for future estimates of the spatial distribution of soil critical
attributes.

The uncertainty of our estimates using Cubist-kriging method is
calculated by adding the bootstrap variance of the Cubist regression
predictions and the average kriging variances of the residuals. We do
not claim that the method we used is optimal, and the kriging with
external drift (KED) approach (Viscarra Rossel et al., 2016) could di-
rectly provide the estimation of the prediction uncertainty from both of
regression prediction and residuals. This method has been successfully
applied in digital mapping and uncertainty assessment for soil organic
carbon at regional scale (Viscarra Rossel et al., 2016). However, we
could not use the KED method in our study across China because it is
computationally difficult to map at the scale of China. Thus, we pre-
ferred the Cubist-kriging approach for our study as we could use more
easily-developed parallel computing framework for the mapping.

As the spatial variability in SOM at a large scale is intense, we
quantified the spatial distribution of uncertainty in top soil (Fig. 9). The
uncertainties are large in Xinjiang and the desert areas of Inner Mon-
golia, the Altyn Tagh Mountains, and Qilian mountain range where data
were lacking or environmental prediction conditions were poor. In fu-
ture national carbon accounting, these unpopulated regions of desert
and rangeland need to be sampled more densely to improve the cer-
tainty of predictions. This would allow the spatial distribution and re-
serve of soil organic matter in China to be objectively and compre-
hensively evaluated. All soil profiles used in this study derived from the
second national soil survey of China. Most of relevant research in China
used same dataset with us, which is public available and most ex-
haustive one. However, it has its limitation that the error occurred in
matching sampling location information and the actual spatial co-
ordinate, which is also the source of uncertainty.

3.6. SOM under different land uses and soil types

The magnitude and distribution of SOM content through the profile
appears to vary with land use (Fig. 1); this is probably related to ve-
getation roots that regulate SOM distribution through the soil profile,
similar findings have been reported in previous studies (M. Li et al.,
2013). In the three soil profiles we randomly selected, SOM of grassland
sharply decreased at a depth of 10 cm, where there is also a significant
decrease in roots. In contrast, SOM in the woodland profile decreased
only slightly until a depth of 50 cm as forest roots are abundant at
greater depths. In the farmland (paddy field) profile, SOM decreased
below the plowing layer, around 20 cm depth, which is the consequence
of long term tillage and natural soil formation.

The China land use map, which was interpolated from Landsat TM
imagery from 1990 by the Data Center for Resources and
Environmental Sciences, Chinese Academy of Sciences (RESDC)

(http://www.resdc.cn), was used as the land use reference in our study.
The map consists of seven major land cover types: paddy field, dry field,
forest, grassland, construction area, vacant land, and water body.
Table 2 lists the estimated SOM for the different land uses (excluding
water body). The highest average SOM is shown by forest (24 g/kg),
followed by paddy field, dry field and grassland, with vacant land
having the lowest SOM (< 10 g/kg). Vacant land also shows the highest
coefficient of variance (90.37%), which was much higher than other
land uses. According to the China Soil Fertility (1998) report, the
average SOM for paddy field and dry field is 25.6 and 18.5 g/kg, and
nearly 60% of paddy field and dry field had a SON content of 15–25 g/
kg and 8–15 g/kg, respectively. Our predictions are consistent with the
reported data ranges.

We constructed a map of SOM in topsoil (0–20 cm) in China at 1-km
resolution using a depth weighted algorithm based on three SOM maps
from SoilGrids (1-km resolution) (www.soilgrids.org), for 0–5, 5–15,
and 15–30 cm depth, respectively. We extracted SOM statistics from our
results and the SoilGrids product based on the China soil type map,
which is available from RESDC (http://www.resdc.cn). Using the report
of China Soil Fertility as a reference (Shen, 1998), we compared the
prediction accuracy of our results and SoilGrids (Fig. 10). Our product
using Cubist more similar to the China Soil Fertility than SoilGrids:
SoilGrids overestimates SOM in most soil types while our results are
closer to the data in the China Soil Fertility report. The differences be-
tween SoilGrids and our results are mainly due to the data source and
modeling approach used. SoilGrids uses a global model for soil data,
while our Cubist model is more suitable for mapping at national scale.
As the series of covariates used in the Cubist model were obtained at
90m resolution, they provide more detail about soil spatial variance,
especially for those regions with large heterogeneity. Consequently, our
produced predictions of SOM would be more accurate than SoilGrids in
China national scale.

4. Conclusions

Our results show that the Cubist model can analyze the relationships
between SOM and environmental covariates under different landscapes
and complex topography at a national scale. The approach allows ef-
ficient calibration of models for each sub-region based on character-
istics of environmental covariates. Thus, we can confirm the effective-
ness of Cubist for high-resolution digital soil mapping at a large scale.

The spatial distribution of SOM is controlled by the collective effect
of the environmental covariates, and therefore, theoretically, all
available environmental covariates should be added into the model for
more accurate prediction. However, we found that using 19 environ-
mental covariates in modeling did not improve prediction accuracy,
and resulted in higher computing time, than using 15 environmental
covariates. Therefore, when prediction accuracy is comparable, use of a
simplified subset of environmental covariates is preferable for produ-
cing large scale, high-resolution soil maps.

Our results also indicate that large spatial heterogeneity, lack of
representative soil samples, and shortcomings of available soil samples
affect the prediction accuracy and uncertainty of digital soil mapping. A
more comprehensive sample distribution and sampling strategy would
improve model accuracy, and the uncertainty map provides a guide for
decision-making in additional sampling. In the current model, we did
not take artificial interventions, such as tillage system, and population
density into consideration, but it would be worthwhile to add these
factors into future modeling research.

The 1980s Chinese national SOM baseline map provides a reference
for monitoring and evaluating how land cover change, soil management
practices, and climate change affect the distribution of SOM. Our 90-m
grid high-resolution SOM map offers more detail, especially for those
areas with high spatial heterogeneity. The map could contribute to
national decision-making on agriculture and related studies, provide
data support for research on terrestrial carbon circulation in China and

Z. Liang et al. Geoderma 335 (2019) 47–56

54

http://www.resdc.cn
http://www.soilgrids.org
http://www.resdc.cn


global carbon stock estimation, and make a contribution to global
change research and global soil mapping.
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