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A B S T R A C T

As a rapid, inexpensive and accurate analysis technique, vis–NIR spectra has shown great advantages for de-
termining a wide variety of soil properties, such as soil organic matter content, mineral composition, water
content, particle size and color. Thus, this technique is becoming increasingly popular in soil science. We aim to
assess the applicability of using vis–NIR spectra to estimate eighteen different soil properties that are important
for Chinese Soil Taxonomy (CST). In this study, vis–NIR reflectance spectra were measured under laboratory
conditions. First, partial least-squares regression (PLSR) was used to predict the following soil properties related
to soil classification: coarse crumb, sand, silt, and clay contents, bulk density (BD), pH (H2O), pH (KCl), soil
organic matter (SOM), total nitrogen (TN), total potassium (TK), and total phosphorus (TP) contents, cation
exchange capacity (CEC), free iron (Fe2O3), soluble salts (salt), available phosphorus (AP), exchangeable alu-
minum (ExAl), aluminum saturation (AS) and base saturation (BS). Then, the important bands for modeling
these soil properties were selected based on the selectivity ratio (SR). Finally, the spectral chromophores of the
soil and the correlations of soil properties were analyzed. The results showed that (1) the prediction accuracy
based on the PLSR algorithm was good for pH, SOM, TN, Fe2O3, salt, AS and BS (RPD > 2.0, R2 between 0.70
and 0.90). For sand, silt, clay, BD, TP, TK, CEC, AP and ExAl, the PLSR model could achieve acceptable estimates
(1.4 < RPD < 2.0, R2 between 0.56 and 0.72), while for coarse crumb, the PLSR model was unable to make
reliable predictions (RPD < 1.4, R2 below 0.50). (2) As chromophore properties, SOM, TN, Fe2O3, clay and salt
are and can be predicted by spectroscopy. Besides, BD, pH, TK, TP, CEC, AP, ExAl, AS and BS have significant
correlations with chromophore properties and can also be predicted by vis–NIR spectroscopy. Therefore, except
for coarse crumb, the soil properties important to CST can be quantitatively predicted by PLSR based on vis–NIR
reflectance spectroscopy. This study is significant to CST, and it provides a fast and efficient method for soil
classification.

1. Introduction

Soil classification is one of the signs of the development of soil
science, the basis of soil survey mapping, as well as the language for
communicating soil information. The Chinese Soil Taxonomy (CST) is a
soil classification system based on diagnostic horizons and diagnostic
characteristics (Gong et al., 2007). The diagnostic horizons and diag-
nostic characteristics were extracted from field surveys of soil proper-
ties and include chemical, physical and morphological parameters
(Chinese Soil Taxonomy Research Group, Institute of Soil Science,
Chinese Academy of Sciences, 2001). The soil properties are usually

described in detail by a professional pedologist and then validated and
elaborated by laboratory wet chemistry analyses (Ben-Dor et al., 2008).
However, wet chemistry analysis is time consuming and expensive and
requires complicated sample treatment procedures, which are common
problems for CST, as well as for the Brazilian and American systems of
soil classification (Santos et al., 2006; Soil Survey Staff, 2003).

A variety of agricultural sensors have been applied to determine soil
properties rapidly in recent decades (Gebberset and Adamchuk, 2010).
Spectroscopy, in particular, has increased in popularity because it is
rapid, timely, cost effective, nondestructive and straightforward (Li
et al., 2015; Ji et al., 2016). The predictive capability of visible and
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near-infrared (vis–NIR) spectroscopy for soil organic matter, clay mi-
nerals, soil texture, soil moisture and other soil properties has been fully
demonstrated by many studies (Kuang et al., 2012; Stenberg et al.,
2010; Xia et al., 2015). In addition, vis–NIR spectroscopy can predict
several soil properties simultaneously. Early in 1995, Ben-Dor ex-
amined the capability of NIR spectroscopy for predicting six soil
properties and concluded that NIR spectroscopy is a promising method
for rapid and nondestructive analysis of soil properties (Ben-Dor and
Banin, 1995). Chang et al., evaluated the ability of NIR spectroscopy to
predict more than thirty soil properties and found that NIR spectro-
scopy can be used to rapidly estimate several soil properties simulta-
neously with acceptable accuracy (Chang et al., 2001). Cohen studied
twenty-two soil properties of wetlands using vis–NIR reflectance spec-
troscopy (Cohen et al., 2005). vis–NIR reflectance spectroscopy have
the potential to simultaneously predict various soil properties related to
soil quality (Viscarra Rossel et al., 2006). Generally, vis–NIR spectro-
scopy is seen as an effective alternative to traditional chemical analysis,
and it can be used to predict several soil properties at the same time
(Bilgili et al., 2010; Viscarra Rossel and Webster, 2012; Ji et al., 2014).
For soil classification, Dematte et al. (2004) evaluated soil types using
vis–NIR reflectance spectroscopy and obtained favorable results for a
number of soil classes. Mouazen et al. (2005) employed vis–NIR re-
flectance spectroscopy to discriminate soil texture classes. Later,
Dematte et al. (2014) evaluated the potential of the vis–NIR spectral
sensing to detect soil differences along a toposequence and showed a
new perspective for pedological evaluation.

Many studies have been conducted on the use of vis–NIR spectro-
scopy to evaluate soil attributes. However, among these soil properties,
few studies have focused on CST. Thus, the objective of this study was
to evaluate the feasibility of vis–NIR spectroscopy to predict the soil
properties that are essential to CST. We did so by (i) predicting eighteen
soil properties by linear regression of the PLSR algorithm, (ii) analyzing
the important characteristic bands of soil properties using the se-
lectivity ratio (SR), and (iii) analyzing the soil spectral chromophores
and correlations among soil properties to study whether these proper-
ties could be predicted by vis–NIR spectroscopy.

2. Materials and methods

2.1. Soil sampling and chemical analysis

Soil samples were collected from Zhejiang Province in the southeast
of China, with latitudes ranging from 27°2′ N to 31°5′ N and longitudes
from 118° E to 123° E (Fig. 1). In total, 146 sampling sites were selected
by professional pedologists. At each sampling site, soil samples were
collected from genetic soil horizons. A total of 591 soil samples were
collected for analysis. The soil samples were air-dried, ground and
sieved to less than 2mm in the laboratory for further analysis. The
determination methods for the physical and chemical soil properties are
listed in Table 1.

2.2. Spectra measurements and data preprocessing

The spectra of soil samples were measured using a Fieldspec® ProFR
vis–NIR spectrometer (Analytical Spectral Devices, Boulder, CO, USA).
The spectral range is from 350 to 2500 nm. The instrument has a
spectral resolution of 3 nm between 350 and 1000 nm and 10 nm be-
tween 1000 and 2500 nm. The sampling resolution of the spectra is
1 nm. Before each measurement, a Spectralon® panel with 99% re-
flectance was used to calibrate the spectrometer. The soil sample was
spread on a culture dish (5 cm in diameter and 1 cm high) and flattened
before scanning. Stones, roots, and voids were avoided. Then, the soil
samples were measured using a high-intensity contact probe (Analytical
Spectral Devices, Boulder, CO, USA) with its own light source. Three
measurements were made at different random positions in the dish. At
each measurement, the instrument made 10 internal scans to obtain a

satisfactory signal-to-noise ratio. A total of 30 spectra were averaged
into one spectrum for each sample.

To eliminate the influence of noise, the spectral regions of
350–399 nm and 2451–2500 nm were removed. The reflectance spectra
(R) were transformed to apparent absorbance (log 1/R). To further re-
duce noise and to enhance the signals, we used the Savitzky–Golay
algorithm (Savitzky and Golay, 1964), with a window size of 11 and a
polynomial of order 2. And then mean-centered before the multivariate
modeling.

We used Rank–KS algorithm (Chen et al., 2016) to compile training
data. First, the data were arranged in ascending order, according to soil
properties, and then Kennard–Stone (KS) algorithm (Kennard and
Stone, 1969) was applied for each n subsets of data. We tried n=3, 6,
9, 12, and 15 and found that the best training data was obtained with
n=6. Additionally, the training data represented two-thirds of the
whole data set.

2.3. Important bands selection and analysis

To find the important bands for prediction models, a variable se-
lection method, SR, was used in this study. The selectivity ratio (SR) is
defined as the ratio between the explained variance of each variable
and the residual variance. A high value denotes a variable with good
predictive performance (Rajalahti et al., 2009).

For further analysis of the spectroscopy, we studied the chromo-
phore properties. A chromophore is a parameter or substance (chemical
or physical) that significantly affects the shape and nature of a soil
spectrum (Ben-Dor et al., 2008). The absorption features of the re-
flectance spectrum are attributed to specific chemical groups in various
structural configurations, including overtone, combination modes, and
electronic processes.

2.4. Model construction and evaluation

Partial least-squares regression (PLSR) (Wold et al., 1983) is one of
the most popular algorithms used for spectral calibration and prediction
among the multiple linear calibration algorithms. It has the advantages
of eliminating the multiple mutual linear problems of the independent
variables (Næsset et al., 2005; Wang et al., 2006).

Leave-one-out cross-validation was used to select the optimal PLSR
calibration model, and twenty factors were tested in this study. To se-
lect the best latent variable number, two aspects should be considered:
the RMSE should be small and the model should have the fewest
number of factors (Viscarra Rossel et al., 2006).

The coefficient of determination (R2), root mean square error
(RMSE) and ratio of prediction derivation (RPD) were used to compare
the prediction accuracies.
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where yi is the i th observed value and ̂yi is the corresponding predic-
tion; y is the mean of observed values and ̂y is the mean of the pre-
dictions, SD is the standard deviation of observed values, and N is the
number of observations. Generally, the larger R2 and RPD are and the
smaller the RMSE is, the better the model prediction.

According to Chang et al. (2001), the prediction ability for soil
properties can be divided into three categories based on the RPD value.
If RPD > 2.0, the model is Grade A, which indicates that the prediction
is excellent. If the RPD is between 1.4 and 2.0, the model is Grade B,
suggesting the model can achieve approximate quantitative predictions.
If RPD < 1.4, the model is Grade C, indicating the model is very poor
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and useless.
Mathematical pre-processing and chemometric analyses were car-

ried out using R software (R Core Team, 2014), MatLab version 7 (The
MathWorks Inc., Natick, MA, USA), andPLS_Toolbox8.5 (Eigenvector
Research Inc., Wenatchee, WA, USA).

3. Results

3.1. Data preprocessing

Eighteen soil properties were determined by the methods described
in Table 1. Some properties had strongly positively skewed distribu-
tions, and to stabilize their variances for the spectroscopic modeling, we

Fig. 1. Maps showing the location of the study site, the soil type of the study site and the positions of the sampling sites in this study.

Table 1
Soil properties measured and analytical methods.

Soil property Method

Particle-size
distribution

Pipette method

BD Cutting ring method
pH(H2O) pH measured in 1:1 soil/water suspension, potential

method
pH(KCl) pH measured in 1:2 soil/KCL suspension, potential

method
SOM H2SO4eK2Cr2O7 oxidation method
TN SeeCuSO4eH2SO4 digestion method–distillation
TP NaOHeMoeSb colorimetric method
TK NaOH–flame photometric method
CEC CH3COONH4–EDTA exchange capacity at pH 7
Fe2O3 Sodium citrate–sodium hyposulfite–DCB extraction
Salt Measurement of electrical conductivity in 1:5

soil:water extracts
AP NaHCO3 extraction–MoeSb colorimetric method

NH4F and HCl extraction–MoeSb colorimetric method
(acidic soil)

ExAl KCl extraction
AS ExAl/(ExCa+ExMg+ExK+ExAl)
BS HCl exchange–neutralization titration method

Table 2
Statistical data of soil properties.a

Soil property N Max. Min. Mean Med. Std dev. Skew.

Coarse crumb (‰) 461 87.00 1.00 14.70 10.00 14.63 1.77
Log10 (coarse crumb) 1.94 0.00 0.95 1.00 0.47 –0.33
Sand (‰) 588 950.41 46.61 392.92 366.00 187.93 0.57
Sqrt (sand) 30.83 6.83 19.23 19.13 4.80 0.04
Silt (‰) 588 775.82 27.40 431.60 452.73 140.29 –0.47
Clay (‰) 588 666.06 9.57 175.48 159.35 102.55 1.09
Sqrt (clay) 25.81 3.09 12.67 12.62 3.88 0.14
BD (g cm–3) 588 1.73 0.25 1.23 1.22 0.17 –0.15
pH (H2O) 588 9.60 3.30 6.27 5.90 1.50 0.49
Log10 [pH(H2O)] 0.98 0.52 0.79 0.77 0.10 0.16
pH (KCl) 588 8.20 3.10 5.13 4.70 1.39 0.61
Log10 [pH(KCl)] 0.91 0.49 0.70 0.67 0.11 0.32
SOM (g kg–1) 588 141.72 0.82 16.60 10.67 16.84 2.82
Log10 (SOM) 2.15 –0.09 1.05 1.03 0.38 0.10
TN (g kg–1) 591 6.70 0.01 0.88 0.61 0.79 2.30
Log10 (TN) 0.83 –2.00 –0.20 –0.21 0.37 –0.24
TP (g kg–1) 590 7.49 0.01 0.51 0.43 0.57 7.88
Log10 (TP) 0.87 –2.00 –0.41 –0.37 0.31 –0.14
TK (g kg–1) 591 46.00 2.70 18.64 18.20 6.94 0.63
CEC [cmol(+) kg−1] 591 40.50 1.05 12.23 11.21 5.81 1.21
Sqrt (CEC) 6.36 1.02 3.40 3.35 0.80 0.40
Fe2O3 (g k−1) 588 79.70 1.80 22.57 20.00 13.07 1.37
Log10 (Fe2O3) 1.90 0.26 1.28 1.30 0.25 –0.38
Salt (g kg–1) 343 17.47 0.00 0.63 0.14 1.93 6.53
Log10 (salt) 1.24 –2.39 –0.78 –0.85 0.64 0.46
AP (mg kg–1) 281 124.89 0.06 13.99 4.72 22.74 2.72
Log10 (AP) 2.10 –1.25 0.65 0.67 0.73 –0.26
ExAl [cmol(+) kg–1] 419 13.70 0.00 2.04 0.68 2.49 1.42
Log10 (ExAl) 1.14 –2.33 –0.19 –0.17 0.78 –0.26
AS (%) 420 107.00 0.02 26.08 9.57 29.53 0.87
Sqrt (AS) 10.34 0.15 4.08 3.09 3.07 0.39
BS (%) 439 99.85 5.42 62.99 74.07 33.02 –0.33

a Note: N=sample size, max.=maximum, min.=minimum, med.=median, std
dev.= standard deviation, skew.= skewness.

D. Xu et al. Computers and Electronics in Agriculture 144 (2018) 1–8

3



transformed the data to approximate normal distributions by square
root or logarithmic transformations. A statistical description of the
original and transformed soil attributes is given in Table 2. After
transformation, the eighteen soil properties exhibited clear normal
distributions.

3.2. Prediction of soil properties using PLSR

The prediction accuracies for the eighteen soil properties using
PLSR and the associated accuracy classes are shown in Table 3 and
Fig. 2. Among these measured soil properties, pH, SOM, TN, Fe2O3, salt,
AS and BS were the best predicted (RPD > 2.0 and R2 were between
0.78 and 0.86, Grade A). Sand, silt, clay, BD, TP, TK, CEC, AP and ExAl
were also estimated reasonably well but with less accuracy
(RPD=1.47–1.90, R2= 0.56–0.72, Grade B). The remaining property,
coarse crumb, was classified as Grade C (RPD < 1.40, R2 < 0.50),
indicating that coarse crumb was poor and not useful.

3.3. Important bands for soil properties in PLSR models

The values of SR are calculated for individual variables and can
therefore be plotted against the spectral data, as illustrated in Fig. 3.

3.3.1. Physical soil properties
In this study, physical soil properties included granular structure,

sand, silt, clay and BD. For coarse crumb, high SR values were mainly in
the spectral regions of 720 nm and 1900–2400 nm (Fig. 3). For sand,
there were small peaks and valleys of SR at 480, 920, 1910 and
2200 nm, indicating these bands may be used to explain the sand
property. For silt, bands near 780 and 1080 nm had high SR values,
with some small peaks near 2200 and 2390 nm. For clay, the SR values
were extremely high, especially for the bands at 410–580 nm, 1410,
1900, 2200 and 2400 nm. For BD, high SR values were located in the
bands at 580, 810, 1400, 1950, 2180 and 2280 nm. For physical soil
properties, mainly related to soil texture, the significant bands included
480, 580, 1400–1410 nm, 1900–1950 nm, 2200 and 2350 nm in this
study.

3.3.2. Chemical soil properties
The SR values of SOM and TN had similar characteristics (Fig. 3).

SOM is affected by the particle size distribution and specific chemical
groups. The highest SR values for SOM were in the visible region of
580–800 nm, with small valleys in the bands of 1400, 1900 and
2200 nm. As a result, the significant bands of SOM and TN include
580–800 nm, 1400, 1900 and 2200 nm. Fig. 3 shows that the SR values
of pH and clay exhibited similar patterns in the regions of 400–600 nm
and above 1900 nm. Furthermore, high SR values for pH were located
in the bands of 480, 780, 1120, 1910, 2200 and 2390 nm. Thus, these
bands can be considered significant bands for pH. For TP and AP, the
high SR scores were located at bands of 870, 1020, 1410, 1870, 2170
and 2230 nm. For TK, the high SR values were between 400 and
480 nm, and there were small peaks at 1870 and 2190 nm. As shown in
Fig. 4, the high SR values of CEC were located in the bands at 680, 890,
1410, 1900, 2210 and 2400 nm. The SR values of Fe2O3 were high in
the visible region of 400–480 nm, and there were peaks at 900, 1400,
1900, 2200 and 2390 nm. Thus, the 400–480 nm, 1900 and 2200 nm
bands can be considered characteristic in this study. For the salt

Table 3
Prediction accuracy based on PLSR.b

Soil properties n LVs R2 RMSE RPD Grade

Log10 (coarse crumb) 154 8 0.33 0.39 1.23 C
Sqrt (sand) 196 19 0.67 2.80 1.72 B
Silt 196 14 0.70 78.44 1.90 B
Sqrt (clay) 196 11 0.58 2.48 1.55 B
BD 196 17 0.63 0.11 1.47 B
Log10 [pH(H2O)] 196 16 0.86 0.04 2.62 A
Log10 [pH (KCl)] 196 20 0.82 0.05 2.34 A
Log10 (SOM) 196 20 0.80 0.18 2.18 A
Log10 (TN) 197 17 0.80 0.16 2.25 A
Log10 (TP) 196 16 0.61 0.19 1.60 B
TK 197 17 0.72 3.80 1.68 B
Sqrt (CEC) 197 11 0.72 0.43 1.90 B
Log10 (Fe2O3) 196 17 0.81 0.11 2.24 A
Log10 (salt) 115 10 0.82 0.29 2.31 A
Log10 (AP) 94 14 0.56 0.50 1.51 B
Log10 (ExAl) 140 20 0.59 0.51 1.55 B
Sqrt (AS) 140 19 0.79 13.56 2.18 A
BS 146 20 0.78 15.40 2.15 A

b Note: n means the number of validation dataset.

Fig. 2. PLSR models of each soil property.
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content, the high SR values were mainly located at 710–1190 nm, with
small peaks at 1820, 2120 and 2230 nm. ExAl had the same trend as pH
in terms of SR. For AS and BS, the SR values were almost the same, and
the high SR values were located in the region of 600–800 nm. There
were also small valleys at 1400 and 1900 nm, and small peaks at
2200 nm.

3.4. Spectral chromophores of soil

The chromophores in soil include minerals (clay, iron oxide, salt,
and primary minerals, such as feldspar and carbonates), organic matter
and water. Some of the functional groups and mechanisms acting as soil
chromophores are shown in Fig. 4. In the visible region (400–780 nm)
and at 880 nm, the functional groups are mainly related to iron oxide;
the functional groups at approximately 825, 930, 1100, 1500, 2000 and
2200 nm are mainly related to SOM and TN; and the functional groups
at approximately 1395, 1415, 2160 and 2300 nm are mainly related to
clay minerals. Other functional groups are mainly related to soil water.

The spectral features of soil properties in the vis–NIR spectral region
are related to the chromophores and the vibration modes of the func-
tional groups. These soil properties, which are related to chromophores,
including clay, SOM, TN, Fe2O3 and salt in this instance, are able to be
predicted by spectroscopy. However, not all properties have distinct
spectral features. However, Ben-Dor and Banin (1995) noted that in-
direct spectral assignments may provide reasonable predictions for soil
properties that do not have clear spectral features.

To identify these indirect spectral assignments, linear correlations
between soil properties were analyzed (Fig. 5). Coarse crumb was sig-
nificantly correlated with sand, silt, clay, pH, TK, CEC, AP and AS.
However, its correlation with chromophore properties such as SOM,
TN, Fe2O3 and salt were low, possibly explaining the poor spectroscopic
modeling accuracy. The correlations of sand and silt with clay, SOM,
TN, Fe2O3 and salt were significant (p < .01). A high correlation also

existed between sand and silt; hence, the SR behavior of silt was similar
to that of sand, as shown in Fig. 3. For BD, the correlations with clay,
SOM and TN were significant (p < .01), while the correlations with
Fe2O3 and salts were not significant. The correlations between pH and
other soil properties were almost all significant. Thus, the prediction of
pH by spectroscopy achieved good results. The correlation of TN with
SOM was extremely high, up to 0.933∗∗, possibly explaining the simi-
larity in SR values between TN and SOM. TP was positively correlated
with SOM and TN at the 0.01 significance level but was correlated with
Fe2O3 and salt at only the 0.05 significance level. TK and AP had sig-
nificant negative correlations with clay and Fe2O3 (p < .01), and their
correlations with SOM were only at the 0.05 level. CEC had significant
positive correlations with clay, SOM, TN and Fe2O3 at the 0.01 level.
ExAl, AS and BS all had significant correlations with clay, Fe2O3 and
salt at the 0.01 level. A significant correlation was present between
ExAl and pH, and this could explain their similar SR values. These re-
sults agree with the results of Table 3 and indicate that soil properties
that have significant correlations with properties related to chromo-
phores can be predicted by spectroscopy, while properties that have
little correlation with chromophore-related properties may not be able
to be predicted by spectroscopy.

4. Discussion

The results show that vis–NIR spectroscopy can be used to predict
most soil properties that are important for CST. Among these soil
properties, pH, SOM, TN, Fe2O3 and salt were the best predicted, with
R2 > 0.78 and RPD > 2.0. The successful predictions of SOM and TN
are mainly because carbon and nitrogen have direct spectral responses
due to the overtones and combinations of NeH, CeH+CeH and
CeH+CeC in the vis–NIR spectra. This phenomenon can also be seen
in Fig. 3, where the high SR values of SOM are in the visible region of
580–800 nm, which is mainly affected by iron oxides and the color of

Fig. 3. Selectivity ratio of each soil property.
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the SOM itself. Small peaks in the bands are also present around 1400,
1900, and 2200 nm, which are mainly affected by the functional groups
of NeH, CeH, CeO and C]O (Stenberg et al., 2010). The significant
bands for SOM in this study are identical to the findings of Shi et al.
(2015) and Ji et al. (2016). The pH of soil is regulated by a variety of
factors. Although there are no direct spectral responses to pH in the
vis–NIR spectra, the prediction accuracy for pH is extremely high,
which may be due to its relationship with the wavelengths of minerals
(Viscarra Rossel and Behrens, 2010; Ji et al., 2014). In this study, the
correlations between pH and other soil properties are significant
(Fig. 5). Additionally, the SR graphs of pH and clay were similar in
some regions. This similarity is inconsistent with the results of previous
studies in which the spectra of pH were reportedly very similar to those
of clay and CEC (Islam et al., 2003; Pirie et al., 2005). The electron
transition of goethite, hematite and iron oxides in the vis–NIR spectra
contributes to the successful predictions of Fe2O3 (Kuang et al., 2012;
Stenberg et al., 2010). The predictions of SOM, Fe2O3, pH and TN are
comparable to previous studies (Shi et al., 2014; Xie et al., 2012; Abdi
et al., 2012; Bilgili et al., 2010).

Sand, silt and clay are important attributes for soil texture. Among
these factors, the clay content draws more attention because it has a
large influence on the soil structure by promoting the formation of soil
aggregates, and its swelling and shrinking properties can form cracks
(Stenberg et al., 2010). Clay content is related to OH in water and Mg–,
Al–, and FeeOH in the crystal lattice of minerals (Ben-Dor and Banin,
1995). The influence of mineralogy on vis–NIR spectra can be assumed
to be a valuable feature for the prediction of the clay content because

clay particles mainly consist of clay minerals (Stenberg et al., 2010).
For example, smectite has strong characteristic absorptions near
1400 nm, 1900 nm, and 2200 nm. Thus, these bands play an important
role in predicting the clay content (Fig. 3). The prediction results for
sand, silt and clay were compared to the results of Chang et al. (2001).
BD was found to be significantly related to clay, SOM and TN
(p < .01); hence, it could be moderately well predicted, with an R2 of
0.63 and RPD of 1.47. For physical soil properties, mainly related to soil
texture, the significant bands include 480, 580, 1400–1410 nm,
1900–1950 nm, 2200 and 2350 nm in this study, which are in accord
with the results of Huang et al. (2009).

The CEC is important for the buffering capacity of soil and is related
to the clay fraction and organic matter content (Stenberg et al., 2010).
Additionally, the CEC is more directly related to the mineralogy and soil
particle size distribution than to the clay content. Thus, the CEC can be
well predicted by vis–NIR spectroscopy (Chang et al., 2001; Shepherd
and Walsh, 2002; Brown et al., 2006; Viscarra Rossel et al., 2016). The
predictions of TP and TK were moderately useful in this study. Abdi
et al. (2012) reported similar prediction performances for soil TK and
TP. AP was moderately well predicted, with an R2 of 0.56 and an RPD of
1.51 (Grade C), and its successful prediction may be due to the covar-
iation with other soil properties that have direct spectral responses in
the vis–NIR range (Stenberg et al., 2010). The prediction results for AS
and BS were similar, and both achieved good results, with R2 values of
0.79 and 0.78, respectively, and RPD values of 2.18 and 2.15, respec-
tively. The good results may be due to their significant relationships
with clay, salt (P < .01) and Fe2O3 (P < .05).

Fig. 4. Functional groups and mechanism in the soil
chromophores (referred from Ben-Dor et al., 2008;
Stenberg et al., 2010).
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The successful prediction of these soil properties is significant for
CST, as some of these properties are essential for determining diag-
nostic horizons and diagnostic characteristics. Additionally, this tech-
nique provides a reliable, efficient, rapid, nondestructive classification
method for CST.

5. Conclusions

The prediction accuracy based on the PLSR algorithm was good for
pH, SOM, TN, Fe2O3, salt, AS and BS (Grade A); moderate for sand, silt,
clay, BD, TP, TK, CEC, AP and ExAl (Grade B); and poor for coarse
crumb.

The SR graphs were generated to identify the significant bands for
various soil properties. As shown in this study, the bands at approxi-
mately 1400, 1900 and 2200 nm were important for all properties. In
addition to these regions, bands at approximately 480 nm were sig-
nificant for sand, clay, pH, TK and ExAl. The bands at approximately
2400 nm were significant for granular structure, silt, clay, pH, CEC,
Fe2O3 and ExAl. The bands at approximately 580 nm were significant
for BD. The significant bands for SOM and TN also included the
580–800 nm range. The bands at approximately 900 nm were con-
sidered to be characteristic for Fe2O3. The important bands for soluble
salts were mainly located at 600–1400 nm. The important bands for AS
and BS were located in the region of 600–800 nm.

The SOM, TN, Fe2O3, clay and soluble salts are chromophore
properties, and these properties can be predicted by spectroscopy with
the proper algorithms. Although sand, silt, BD, pH, TP, TK, CEC, AP,
ExAl, AS and BS are not chromophore properties, they have significant
correlations with chromophore properties (p < .01 or p < .05). Thus,
these properties can also be predicted with the proper algorithms based
on spectroscopy. However, coarse crumb is not a chromophore property
and its correlations with chromophore properties are low, which may
explain the poor prediction. The ability to accurately predict important
soil properties related to CST indicates that vis–NIR spectroscopy

represents a reliable, efficient, rapid, nondestructive classification
method for CST.
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