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Summary

Visible-near infrared (vis–NIR) spectroscopy can reveal various soil properties and facilitate soil classification.
However, few studies have attempted to classify vertical soil profiles that contain several genetic horizons. Here,
we propose the ‘multiple objectives mixed support vector classification’ (MOM–SVC) method to classify soil
profiles. A total of 130 soil profiles were collected from genetic horizons in Zhejiang Province, China. After
laboratory analysis, soil profiles were classified according to the Chinese Soil Taxonomy system. Vis–NIR spectra
were recorded from each genetic horizon of each soil profile and were then pre-processed. We performed the
MOM–SVC method as follows: (i) created a support vector machine (SVM) model (one-versus-one approach)
using spectral data from all soil horizons in calibration profiles, (ii) applied the SVM model on each horizon
of the profile to be predicted, (iii) extracted ‘votes’ from each horizon and mixed (or summarized) them into
the votes of each profile to be predicted and (iv) classified each profile by the majority-voting method. We
also investigated whether the additional input of auxiliary soil information (e.g. moist soil colour, soil organic
matter and soil texture), which could be measured easily or be well predicted by vis–NIR spectroscopy, could
improve the accuracy of soil classification when combined with it. Independent validation results showed that
the MOM–SVC method performed better at the soil order level than at the suborder level. Adding auxiliary soil
information to the classification model improved the overall accuracy of classification at the soil order level. The
proposed MOM–SVC method provides a fast objective diagnostic of soil classes for use in soil surveys and can
help to update soil databases when a more objective soil classification system is developed.

Highlights

• The MOM–SVC method can be used to classify soil profiles objectively with a variety of soil horizons.
• Stratified random sampling was used to quantify prediction uncertainty in classification
• MOM–SVC can predict soil orders with greater accuracy than suborders.
• Adding auxiliary soil information into the classification model improved prediction accuracy.

Introduction

It is well known that a proper understanding of the patterns of
soil distribution at various scales makes a significant contribution
to sustainable soil management (McBratney et al., 2000). Better
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knowledge about soil classes helps planners and policy makers to

make informed decisions on soil management, including cultivation

planning and the design of drainage systems (Pontes et al., 2009).

Traditionally, soil surveys combine a soil surveyor’s specialized

knowledge, field descriptions, laboratory analysis, and subsequent

classification and mapping (Vasques et al., 2014). However, with

the increasing demand for precision agriculture, more detailed soil
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classification maps are needed for decision making (Mouazen et al.,
2007; Viscarra Rossel et al., 2016). Consequently, classification
maps obtained from traditional soil surveys can no longer meet
the growing need for high-resolution mapping; thus a labour-saving
and cost-effective method is needed to fill the gap (Arrouays et al.,
2014; Viscarra Rossel & Bouma, 2016; Chen et al., 2018). Proximal
soil sensing techniques such as visible near-infrared spectroscopy
(vis–NIR) might be an aid to more detailed automated soil surveys.

The vis–NIR technology can assist characterization of soil effec-
tively, and its measurements have the advantage of being rapid,
non-destructive, labour saving and inexpensive (Stenberg et al.,
2010; Li et al., 2015; Nocita et al., 2015; Ji et al., 2016). Fur-
thermore, various soil physicochemical properties can be predicted
simultaneously (Chang & Laird, 2002; Ji et al., 2014; Xu et al.,
2018). Soil information is extracted from characteristic absorption
peaks at specific wavelengths of electromagnetic radiation using
chemometrics. In this way, vis–NIR spectra have been used for the
prediction of many soil properties, including soil organic carbon
(SOC), colour, clay, pH and other soil survey related macro- and
micro-constituents at various scales (Viscarra Rossel et al., 2006b;
Stenberg et al., 2010; Shi et al., 2014; Ji et al., 2015; Chen et al.,
2016; Jia et al., 2017).

It is a major challenge to combine spectral information from
soil profiles when classifying soils with spectroscopic techniques.
Commonly, the spectral response of soil is evaluated only at a
given depth or depth by depth, which would result in an incom-
plete interpretation because most soil classification systems are
based on multiple horizons (Vasques et al., 2014). Viscarra Rossel
& Webster (2011) found that vis–NIR techniques could be used
to discriminate soil classes by averaging the spectra of topsoil
and subsoil horizons under the Australian soil classification sys-
tem. Vasques et al. (2014) successfully performed soil classifica-
tion by combining vis–NIR spectral data from three depth intervals
(0–20, 40–60 and 80–100 cm) under the Brazilian soil classifica-
tion system. However, using soil data from fixed depths might not be
optimal for soil classification for vis–NIR because epipedons (diag-
nostic horizons) are used for soil classification in most countries
(e.g. USA, Brazil and China). In China, a soil class is deter-
mined by diagnostic horizons and diagnostic characteristics that
are specified in the Chinese Soil Taxonomy (CST, Shi et al.,
2006). Diagnostic horizons refer to generalized soil interfaces
such as: A horizon, AB horizon, human-cultivation-related siltigic
epipedon, cumulic epipedon and so on; diagnostic subsurface hori-
zons, which include B and E horizons, refer to soil horizons that
were formed by transport, eluviation or illuviation under surface
horizons. Therefore, soil genetic horizons should possibly be of
more value for soil classification than soil data gained from fixed
depths.

The main challenge for determining soil classes by vis–NIR data
from soil genetic horizons lies in the different numbers of such
horizons in profiles. A large percentage of soil profiles have A, B
and C horizons, whereas some Cambosols have only A and B and
some Primosols have only A and C horizons. Therefore, developing
a new approach to classify soils by merging spectral data from the

various genetic horizons within one profile is needed for the rapid
determination of soil class.

The support vector machine (SVM) algorithm is a data mining
approach for classification as well as regression (Vapnik, 1995),
which is based on the structural risk minimization principle and
can overcome over-fitting problems. The SVM has been used for
determining soil classes in recent decades, but the main focus has
been on topsoil (Kovačević et al., 2010; Brungard et al., 2015;
Lorenzetti et al., 2015; Heung et al., 2016). We aimed to extend
the SVM and propose a method named ‘multiple objectives mixed
support vector classification’ (MOM–SVC) in order to mix all
classification results of multiple horizons (multiple objectives) from
the individual profiles. We also tested the potential of adding
auxiliary soil information including moist soil colour, soil organic
matter (SOM) and soil texture for modelling at the soil order and
suborder levels.

Materials and methods

Study area

The study was carried out in Zhejiang Province, a southeast coastal
region of China (Figure 1). It is located between 27∘N–31.5∘N
and 118∘E–123∘E and covers an area of more than 105 000 km2.
The elevation ranges from 0 to 1907 m, with an ascending gradient
from the southwest to the northeast. With a subtropical monsoon
climate, the mean annual precipitation is almost 2000 mm, with
about 70% accumulating between May and December (Teng et al.,
2014). The mean annual temperature is between 15 ∘C and 18 ∘C.
Water resources are abundant and water levels are highly variable
throughout the year. Forest cover is about 54.6% in Zhejiang,
and evergreen broad-leaf trees are the dominant vegetation. The
region has been cultivated with rice for thousands of years and has
been gradually expanding because of the creation of polders on
the seashore. In the study area, soils have developed mainly from
residual, water-transported and wind-transported parent materials.
According to the CST, Cambosols, Anthrosols, Primosols, Argosols
and Ferrosols are the dominant soil orders in Zhejiang; they cover
more than 96% of the total area. Their equivalent soil classes under
the World Reference Base (WRB) soil classification system are
listed in Table 1 (Gong & Zhang, 2006). Cambosols and Anthrosols
are widely distributed in the study area and can be found in
almost 55% of it. Primosols cover 16.3% of the study area and are
mainly on alluvial plains and the highlands. Argosols and Ferrosols
typically occur in the highlands.

Soil sampling and classification

Based on the spatial distribution, area proportions of soil classes
from the Second National Soil Survey of China and the knowledge
of soil experts, a total of 130 soil profiles were visited in the study
area (Table 1). Soil samples were taken from soil genetic horizons
(A, B or C). Prior to dispatch to the laboratory for physicochemical
analysis, soil sample moist colour was recorded using the Munsell
system. Clay, silt and sand were determined by the pipette method.
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Figure 1 Locations of the study area and of the legacy measured soil profiles. Soil orders are classified using the Chinese Soil Taxonomy scheme. [Colour
figure can be viewed at wileyonlinelibrary.com].

Table 1 Correlation between the Chinese Soil Taxonomy and World Ref-
erence Base (adapted from Gong & Zhang, 2006)

Chinese soil taxonomy World reference base

Cambosols Cambisols
Anthrosols Anthrosols
Primosols Fluvisols, Leptisols
Argosols Luvisols
Ferrosols Acrisols

The content of SOM was determined by the H2SO4 –K2Cr2O7

oxidation method at 180 ∘C for 5 minutes. All the soil profiles were
classified by soil experts according to the CST (Table 2).

To ensure that calibration data were covered fully, stratified
random sampling was performed on the soil suborder levels by
setting the ratio of calibration profiles to validation profiles at ∼2:1.
There was only one soil profile in the suborder Anthric Primosols
and two profiles in Orthic Anthrosols; therefore, both were allocated
to the calibration dataset. Finally, the whole dataset was divided
into 89 calibration profiles and 41 validation profiles. To quantify
the uncertainty induced by the random sampling procedure, we
repeated the stratified random sampling 100 times. Finally, 100
classification models were obtained from calibration datasets and

Table 2 Soil orders and suborders classified for 130 soil profiles according
to the Chinese Soil Taxonomy (CST)

Soil order N1
a/N2

b Soil suborder N1/N2

Anthrosols (An) 47/113 Orthic Anthrosols (OrAn) 2/6
Stagic Anthrosols (StAn) 45/107

Argosols (Ar) 21/46 Udic Argosols (UdAr) 21/46
Cambosols (Ca) 45/109 Aquic Cambosols (AqCa) 16/45

Perudic Cambosols (PeCa) 6/14
Udic Cambosols (UdCa) 23/50

Ferrosols (Fe) 4/10 Udic Ferrosols (UdFe) 4/10
Primosols (Pr) 13/24 Alluvic Primosols (AlPr) 6/12

Anthric Primosols (AnPr) 1/2
Orthic Primosols (OrPr) 6/10

aN1 is the number of soil profiles.
bN2 is the number of genetic horizons in soil profiles.

100 corresponding validation datasets were used to evaluate model
performance independently.

Spectroscopic measurements and pre-processing

All soil samples were air-dried, ground and sieved to less
than 2 mm. Soil vis–NIR spectra were then measured using a
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Figure 2 Workflow of the multiple objectives mixed support vector classification (MOM–SVC) model. [Colour figure can be viewed at wileyonlineli-
brary.com].

FieldSpec 3 Spectrometer with a high-intensity contact probe
(Analytical Spectral Devices Inc., Boulder, CO, USA). The instru-
ment has a spectral range of between 350 and 2500 nm and a
resolution of 3 nm at 700 nm and 10 nm at 1400 nm and 2100 nm
with a sampling resolution of 1 nm. A Spectralon panel with 99%
reflectance was used as a white reference for each measurement.
For each soil sample, 10 internal replicated spectra were averaged
to provide one representative spectrum, with minimized noise and
maximized signal-to-noise ratio.

Spectra were reduced to 400–2450 nm (2051 bands) to eliminate
noise at their edges. The spectral data were then smoothed using the
Savitzky & Golay (1964) algorithm with a window size of 11 and
polynomial of order 2.

Soil colour transformation

The Munsell soil colour data, which cannot be used directly in
the regression models, were transformed to RGB (red, green, blue)
with the method described by Viscarra Rossel et al. (2006a) and
using the munsell2rgb function in the package aqp of R 3.1.3
(Beaudette et al., 2013; R Core Team, 2014).

Multiple objectives mixed support vector classification

In this study, multi-classification problems have been solved by
SVMs using ‘one-versus-one’. Suppose that we have m classes and

that m is greater than 2. In the one-versus-one approach, SVM train
m(m−1)

2
binary classifiers based on each pair of classes. Each binary

classifier gives a ‘vote’ to the more likely class in a pair of classes
by decision values, and the majority voting method will determine
the final class.

Figure 2 demonstrates the workflow of MOM–SVC, which is
an extension of SVM. We prepared an SVM model using spectral
data, SOM and soil texture for all soil horizons in all the profiles
of the calibration set. We then applied the resulting classification
model to each horizon in each profile in the prediction set. The
classification of the profile was then determined from the most
frequent horizon classification within the profile. Where this was
not possible (i.e. there were two or more most frequent horizon
classifications) the decision value within these classes was revisited
to examine the SVM binary decision value (dv∈ {−1, 1}). If the
value, say, between class one and class two (c1-vs-c2), was positive
then the profile class was allocated a unit vote in favour of the class,
c1, or else it was allocated in favour of c2. A larger |dv| indicates a
greater distinction between c1 and c2; therefore, the largest |dv| from
the most heavily weighted or voted soil classes determined the final
soil class for the test profile.

The SVM modelling was performed with package e1071 in
R 3.1.3 (Dimitriadou et al., 2005; R Core Team, 2014) using
C-classification with a radial kernel function. The parameters
‘gamma’ and ‘cost’ were optimized automatically by grid searching
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Figure 3 Boxplots of (a) soil organic matter (SOM), (b) clay, (c) silt and (d) sand for five soil orders. The median values of each soil order are indicated by
the horizontal black lines and the numbers inside each box. [Colour figure can be viewed at wileyonlinelibrary.com].

(smallest RMSE) with 10-fold cross-validation. The settings of the
search grid for ‘gamma’ were 2−3, 2−2, 2−1 and 20, whereas for
‘cost’ they were 2−1, 20, 21 and 22. To assess model uncertainty,
the mean value and 90% confidence intervals (CIs90%) of producer
accuracy were evaluated for both calibration and validation perfor-
mances from 100 sets of stratified random sampling.

Results and discussions

Soil properties and vis–NIR spectral characteristics

Considerable variation in SOM, clay, silt and sand was observed
among the five soil orders (Figure 3). Anthrosols had the largest
median SOM contents (14 g kg−1) as well as a large interquartile
range (IQR) because of land management practices (e.g. fertiliza-
tion, liming, irrigation and organic amendments) and their opera-
tional differences among farmers (Pan et al., 2004; Chenu et al.,
2018). Anthrosols had large median silt content (49%) and mod-
erate median clay (15%) and sand contents (36%). Argosols had
a similar distribution of SOM to Anthrosols, whereas their clay
content (20%) was much larger because their formation was accom-
panied by the leaching of water-soluble salts and the subsequent
formation of clay minerals. Ferrosols usually occur in tropical and
subtropical zones under high temperature, high precipitation and
adequate drainage conditions. With considerable leaching of both

silicic acid and base ions, iron and aluminum oxides were con-
centrated in Ferrosols, which had the largest clay content (31%)
but relatively small SOM content (8 g kg−1). Primosols and Cam-
bosols were both less developed; the largest difference between
them is that Primosols do not have diagnostic horizons or features,
whereas Cambosols have cambic horizons. In comparison to other
soil orders, Primosols have the smallest SOM (7 g kg−1), clay (8%)
and silt (24%) contents and the largest sand content (66%).

Figure 4 shows the spatial distribution of soil colour in RGB
colour space. After transformation into this form, moist soil colour
was clearly discernible. It is associated with soil composition
and properties (e.g. humus, water content, iron oxide and silicon
dioxide); therefore, it is a crucial reference for discriminating soil
classes using horizons and diagnostic characteristics in the CST.
Moist soil colour from the field provides a contribution to soil
classification independent of the colour obtained from the vis–NIR
spectra of processed samples in the laboratory.

Figure 5 presents field conditions, ground soil samples from two
profiles of Anthrosols and Cambosols, and their corresponding
vis–NIR spectra shown for three genetic soil horizons. Anthrosols
had a distinct reflection peak between 750 and 800 nm in B and C
horizons, which were mainly dominated by iron oxides (Stenberg
et al., 2010). Zhejiang province is in the lower reach area of the
Yangtze River delta and it has a long history of rice cultivation;
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Figure 4 Soil RGB colour space. [Colour figure can be viewed at wileyon-
linelibrary.com].

therefore, paddy soil accounts for most of the Anthrosols in the
study area. Because these soils have been subjected to long-term
dry–wet alternation, hydrous iron oxides have accumulated in the
B horizon of Anthrosols. Iron oxide absorption was also found
in the C horizon, which has resulted mainly from leaching from
the B horizon. Cambosols had similar reflectance curves in the
B and C horizons (Figure 5) because they are not yet developed
sufficiently to have a large difference between them. The A horizon
in Cambosols was greatly affected by biotic activities; therefore, it
had more SOM than the other two horizons.

Classification performance at soil order level

The calibration accuracy of soil classification with vis–NIR as input
to MOM–SVC provided an overall estimate of 0.85 (Figure 6)
with lower and upper 90% confidence intervals at 0.83 and 0.87,
respectively. In the CST, a series of soil properties (e.g. soil organic
matter, iron-aluminum oxides, silicon dioxide, silicate, humus, soil
texture, calcium carbonate, gypsum, soluble salts and pH) have been
taken into consideration at the soil order level. The MOM–SVC
resulted in large and stable accuracies of 0.95 (0.94, 0.97) and 0.97
(0.97, 0.97) for Anthrosols and Cambosols, with a good accuracy
of 0.79 (0.79, 0.79) for Argosols. The accuracy for Ferrosols was
moderate at 0.67 (0.67, 0.67) and Primosols had the smallest and
most variable classification accuracy of 0.18 (0, 0.33).

The overall accuracy was 0.57 (0.54, 0.59) for a total of 41
profiles in the validation procedure using the MOM–SVC method.
Cambosols and Anthrosols were classified correctly with large
mean accuracies at 0.70 and 0.80, respectively, whereas mean
accuracy (<0.20) was small for Argosols and Primosols. There was
only one profile for the validation of Ferrosols; thus, they were
always misclassified and had the smallest accuracy of 0. In contrast,

Cambosols and Anthrosols had good accuracy because there were
many training profiles in the calibration dataset. For Ferrosols, the
training profiles accounted for only a small part of the calibration
dataset. The poor predictive accuracy for Primosols was a result of
its small calibration accuracy.

When information on available soil properties was added (includ-
ing moist soil colour, soil organic matter and soil texture) in
modelling, MOM–SVC performed better in both calibration and
validation procedures (Figure 7) than the calibration results mod-
elled with soil spectra alone. Including additional soil properties
into classification slightly improved the calibration accuracy for
Anthrosols, Arogosols and Primosols, but reduced the accuracy
for Ferrosols. The improvement in accuracy for Argosols and
Primosols probably resulted from the additional information about
clay and soil organic matter, which are diagnostic characteristics
for these soils. The overall accuracy improved from 0.57 to 0.68 in
the validation procedure. A large increase in accuracy was observed
for Cambosols, which improved from 0.70 to 0.93. Predictions
for Anthrosols and Primosols were also better. The predictive
accuracy for Ferrosols and Argosols remained the same. These
improvements indicated that including auxiliary soil information
in classification models could improve classification accuracy at
the soil order level. The improvement in accuracy for Anthrosols
might be because of the fact that several diagnostic horizons in
Anthrosols are related to moist soil colour and SOM. For example,
the SOC content in a fimic epipedon should be larger than 6 g kg−1,
and for a waterlogged anthrostagnic epipedon, the moist soil
colour is as follows: hue ≤4, value ≤2 and chroma more yellow
than 7.5 years.

For comparison, similar model accuracies for calibration (0.89)
and validation (0.67) at the soil order level were obtained for
Brazilian soil using vis–NIR spectra from multiple depths (Vasques
et al., 2014). The authors used 20 principal components from 630
reflectance bands and multinomial logistic regression.

Classification performance at the suborder level

Figure 8 illustrates the prediction accuracy of soil profiles using
vis–NIR spectra at the soil suborder level. The MOM–SVC
achieved overall accuracies of 0.81 (0.79, 0.83) in the calibration
data and of 0.55 (0.49, 0.59) in the validation data, both of which
were slightly smaller than that at the soil order level.

For the subsoil, more detailed diagnostic information was taken
into consideration for soil classification, which made the classifi-
cation more complex and difficult. Taking Cambosols for example,
the largest difference between Aquic, Perudic and Udic Cambosols
is the soil moisture regime, which controls moist soil colour, the
strength of redox and the transport of soluble ions. Therefore,
at the subsoil order, misclassification occurred within soil orders:
in calibration, all Orthic Anthrosols were misclassified as Stagic
Anthrosols; in validation, 18% of Udic Cambosols were misclassi-
fied as Aquic Cambosols. Sometimes, there might be strong inter-
ference from the soil moisture regime in classification: in validation,
71% Udic Argosols were misclassified as Udic Cambosols whereas
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Figure 5 Images of (a, d) soil profiles of Anthrosols (upper) and Cambosols (lower), their corresponding ground soil samples (b, e) for each vertical profile
and soil vis–NIR spectra in three soil horizons for each profile (c, f). [Colour figure can be viewed at wileyonlinelibrary.com].

18% Udic Cambosols and 100% Udic Ferrosols were incorrectly
classified as Udic Argosols.

Figure 9 shows the model accuracy when auxiliary soil infor-
mation was included in the classification at the soil suborder. It
indicates that there was a small improvement with auxiliary soil
information in both calibration (0.91 (0.90, 0.92)) and validation
(0.61 (0.59, 0.64)) data for soil suborders. In comparison with the
validation accuracy in Figure 7, performance was better or equiva-
lent for almost all the soil suborders, except for Stagic Anthrosols.

Misclassifications were also observed within the same soil order or
the same soil moisture regime of different soil orders. The result
also shows that adding auxiliary soil information into soil classifi-
cation is of more help at the soil order level than at the suborder level
because the differences in accuracy between classification with and
without auxiliary soil information were 0.11 and 0.06 for the soil
order and suborder, respectively.

The performance of our validation results at the soil suborder
level was better than the independent validation (0.48) from the
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Figure 8 Accuracy matrices of the soil suborder classification using vis–NIR spectra in (a) calibration and (b) validation. Mean values are presented outside
the square brackets, and lower and upper limits of the 90% confidence intervals are shown inside them. [Colour figure can be viewed at wileyonlinelibrary.com].
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Figure 9 Accuracy matrices of the soil suborder classification using vis–NIR spectra and available soil properties in (a) calibration and (b) validation. Mean
values are presented outside the square brackets, and lower and upper limits of the 90% confidence intervals are shown inside them. [Colour figure can be
viewed at wileyonlinelibrary.com].
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study by Vasques et al. (2014), whereas it was worse than the
leave-one-out cross-validation (0.70−0.76) from the work of Zeng
et al. (2016), in which vis–NIR spectra were used to classify soils
by multinomial logistic regression from Anhui province, east China.
The differences in performance might result from the differences in
data sources, modelling approaches and validation schemes.

Our results demonstrate that the MOM–SVC method has a good
ability to classify soil profiles with vis–NIR spectroscopy even
when the profiles had a different number of horizons. We are not
proposing that this is as yet a replacement for laboratory analy-
sis and expert knowledge, but vis–NIR spectroscopy offers a new
possibility for rapid soil classification based on legacy soil data
and therefore more detailed soil class maps. Rizzo et al. (2016)
and Teng et al. (2018) have already demonstrated the potential use
of vis–NIR spectra in updating soil class maps from a local to
national scale. Furthermore, the vis–NIR technique makes it pos-
sible to update soil databases rapidly when a more objective soil
classification system is developed. Developing advanced automated
proximal soil sensing platforms such as the Soil Condition Analy-
sis System (Viscarra Rossel et al., 2017) would enable us to collect
more vertical measurements directly in the field at a fine depth res-
olution. The MOM–SVC is flexible and can deal with multi-depth
data; therefore, more robust prediction results could be obtained
by this method if more detailed soil profile information was
available.

Conclusions

The proposed MOM–SVC method was able to model a soil
database that included profiles with different numbers of genetic
horizons, and it performed well in predicting soil classes of soil
profiles using vis–NIR spectra. Predictive accuracy was much
better at the soil order level (classification accuracy from 0.57 to
0.68) than the suborder level (classification accuracy from 0.55 to
0.61). Our results also showed that inadequate calibration data at
each soil suborder is a reason for its poorer classification accuracy at
the suborder level; therefore, more calibration data would be needed
for a more robust soil classification. Easily available soil details,
such as moist soil colour, SOM and soil texture, are important
diagnostic characteristics in soil classification and including this
information in the classification model improved accuracy at the
soil order level, although it showed less improvement at the
suborder level. More auxiliary information might be needed for
better classification models at the soil suborder level.

We conclude, therefore, that, based on soil legacy data, vis–NIR
spectroscopy would be a useful auxiliary technique for the rapid
determination of soil classes and thus could make a contribution
to updating soil classification maps at regional and even larger
scales. There is a strong possibility that B horizons (the product
of pedogenesis) are more important than A and C horizons in soil
classification; therefore, further work should be focused on whether
it might be better to assign different weights to each genetic horizon
based upon expert knowledge than to apply equal weights as in the
MOM–SVC method.
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