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A B S T R A C T   

The estimation of long-term fine particulate matter (PM2.5) concentrations and trend assessments play a critical 
role in preventing health risks to the human body. Deep learning methods based on time series have been highly 
accurate in predicting PM2.5. However, most time series models lack the ability for spatial generalization because 
they cannot combine the analysis at different spatial scales. In addition, temporal long-term trend analysis have 
not been reported in most of the studies. In this study, to reveal the spatiotemporal variability and trends of 
PM2.5, an improved deep learning framework named the SpatioTemporal Enhanced Neural Network (STENN) is 
developed for estimating PM2.5 concentrations with a spatial resolution of 1 km. Based on the bidirectional long 
short-term memory (LSTM) structure and attention mechanisms, the model provides a geographic-data-driven 
approach to incorporate the impact of the spatial heterogeneity and time dependence of PM2.5, which demon-
strates that it has robust spatiotemporal transferable power with an R2 of 0.89 produced by cross validation (CV). 
High-resolution (1 km) and high-quality annual PM2.5 products for mainland China from 2014 to 2020 were 
constructed. In comparison with the current 1-km PM2.5 products, our framework demonstrates better stability in 
different regions, especially in terms of the high-value estimations and spatial continuity. The spatiotemporal 
PM2.5 distributions were also analyzed based on the time-series products. After the implementation of various 
control policies for atmospheric pollution, a declining trend of PM2.5 concentrations was observed in 88.79% of 
China between 2014 and 2020, with a mean decrease rate of 3.35 μg m− 3 yr− 1. This result indicates that the 
control policies of the Chinese government were effective in reducing PM2.5 concentrations. The PM2.5 con-
centrations in China reveal an exponential temporal trend, from a rapid decline to a gradual slowdown and a 
stable phase. To realize the vision of the Beautiful China Initiative, a regionally targeted policy for air pollution 
management is required. This study provides valuable implications for a more detailed analysis of the spatio-
temporal variations in PM2.5 at small and medium spatial scales by developing an improved deep learning 
approach with a spatial generalization ability and integration with multi-temporal satellite products.   
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1. Introduction 

Ambient PM2.5 (particulate matter with an aerodynamic diameter 
less than or equal to 2.5 μm) predominantly originates from fuel com-
bustion and other anthropogenic emissions. The PM2.5 was responsible 
for 2.9 million deaths worldwide in 2013 according to the Global Burden 
of Disease (GBD) (Brauer et al., 2016). It has been reported that ambient 
PM2.5 was the fifth-ranking mortality risk factor in 2015 (Cohen et al., 
2017). In recent years, the Chinese government has issued a series of 
policies (e.g., Action Plan on Air Pollution Prevention and Control, 
three-year Blue-Sky Defense) (Wang et al., 2020b; Zhang et al., 2019) for 
the prevention and control of PM2.5 to limit its adverse environmental 
and health effects in China (Chen and Chen, 2021; Wang et al., 2020a; 
Zhang et al., 2021). Thus, the number of PM2.5-observation stations in 
China has been increasing annually since 2013. However, the 
geographic coverage of these monitoring networks remains limited and 
uneven, which leads to a lack of reliable information regarding the 
concentrations of PM2.5. 

Recently, the development of aerosol observations from satellite 
remote sensing has made it possible to estimate the PM2.5 distribution 
with broad spatial coverage and acceptable spatial resolution. The sat-
ellite aerosol optical depth (AOD) measures the light extinction of 
aerosols over the entire atmospheric column (Ceca et al., 2018). Because 
of the correlation between the aerosol optical properties and particle 
size distribution, composition, and shape (Engel-Cox et al., 2004; Gupta 
and Christopher 2008; Li et al., 2015a), a series of satellite-based AOD 
products (e.g., Advanced Himawari Imagery, AHI; Moderate Resolution 
Imaging Spectroradiometer, MODIS; Multi-angle Imaging Spectroradi-
ometer, MISR; Visible Infrared Imaging Radiometer Suite, VIIRS) have 
been used to estimate PM2.5 (Chen et al., 2020a; Franklin et al., 2017; 
Liu et al., 2019b; Meng et al., 2015; Pang et al., 2018; Wei et al., 2018; 
Yao et al., 2019; Zhang and Li, 2015). Recently, the emerging high- 
resolution (spatial resolution of 1 km and produced daily) Multi-Angle 
of Implementation of Atmospheric Correction (MAIAC) AOD datasets 
(Lyapustin et al., 2018) derived from both Terra and Aqua MODIS are 
promising resources for estimating PM2.5 with a fine spatial resolution. 

Many studies have developed various statistical methods for PM2.5, 
based on the relationships between PM2.5 and satellite-based AOD 
(Engel-Cox et al., 2004; Guo et al., 2009). The methods range from 
simple linear regression, which only considers the AOD-PM2.5 relation-
ship (Schaap et al., 2009) to the multiple linear regression (Ma et al., 
2016; Zhang et al., 2018; Xiao et al., 2017) and have been further 
developed for geostatistical regression that considers the spatial and 
temporal heterogeneity (e.g., geographically weighted regression 
(GWR) model and geographically and temporally weighted regression 
(GTWR) model) (He and Huang, 2018; Song et al., 2014; van Donkelaar 
et al., 2016; Xiao et al., 2018). Recently, machine learning models have 
been widely used to estimate PM2.5 (Li et al., 2015b; Liu et al., 2019a; 
Liu et al., 2019c; Stafoggia et al., 2019; Yang et al., 2020). Nevertheless, 
the meteorological (e.g., boundary layer height, relative humidity, and 
wind speed) and anthropogenic determinants (e.g., industrial and 
vehicle emissions and agriculture fertilizer application) related to PM2.5 
are diverse, leading to strong spatial and temporal variations in PM2.5 
(Ma et al., 2019a; Zhao et al., 2019). Statistical regression methods, with 
weak feature learning abilities, cannot establish a stable relationship 
between PM2.5 and AOD, especially at large spatial scales (Ma et al., 
2014). Meanwhile, machine learning models can fit nonlinear re-
lationships well (Hu et al., 2020; Fu et al., 2021; Hu et al., 2021). They 
are based on only features modeling with large amounts of data (Bro-
kamp et al., 2018), whereas the geographical and temporal features 
hidden in time series and spatial distribution are underutilized. 

In recent years, deep learning has achieved notable success in 
discovering the potential and intricate relationships from the temporal 
sequences and spatial data (Ma et al., 2019b; Mountrakis et al., 2018; 
Reichstein et al., 2019). In particular, the recurrent neural network 
(RNN) and its variant long short-term memory (LSTM) are two of the 

most prominent deep learning models that specialize in linking adjacent 
observations, recognizing time variation patterns over a long time series, 
and capturing intricate nonlinear relationships (Fan et al., 2017; 
Hochreiter & Schmidhuber, 1997). Existing studies have confirmed that 
PM2.5 exhibits a strong time dependency. Therefore, some researchers 
have applied deep learning methods to estimate and predict PM2.5 using 
long time-series data. Qi et al. (2019) used the LSTM model to estimate 
hourly PM2.5, and validated the superiority of deep learning models. To 
further improve the spatiotemporal learning power of the neural net-
works, multiple neural networks (e.g., convolutional neural network 
(CNN), artificial neural network (ANN), LSTM) have been combined to 
predict the daily PM2.5 concentrations (Pak et al., 2020; Soh et al., 
2018). On this basis, the multiple data types (i.e., AOD and gaseous 
pollutant data) are integrated into combined CNN and RNN models by 
Wu et al. (2020). However, the weak spatial generalization ability of 
deep learning models limits the analysis of the spatially continuous 
changes and geographic distribution of PM2.5 at the national scale. 
Furthermore, deep learning models for PM2.5 predictions have mostly 
been utilized for short time scales (i.e., daily and hourly) (Li et al., 
2017b; Wen et al., 2019). In addition, the potential of deep learning in 
long-term trend analysis has not yet been explored. More importantly, 
most RNN models are based on time series, and they ignore the spatial 
heterogeneity and spatial correlation (Wang et al., 2021), which have a 
strong influence on geographic objects (i.e., PM2.5) (Tobler, 1970). 
Therefore, it is critical to build a robust model that can be widely used to 
process remote sensing data with both spatial distribution characteris-
tics and multi-temporal phases to estimate PM2.5. 

The key aim of the present study was to develop an improved LSTM- 
based method with spatial generalization for annual PM2.5 estimations 
across China. In order to overcome the drawbacks of the RNN models 
mentioned above, in this study, we constructed a new framework called 
the SpatioTemporal Enhanced Neural Network (STENN), which intro-
duced the concept of the spatial signals. Under this framework, the 
model accuracy and spatial and temporal transferability were also 
validated. By integrating the historical multi-temporal remote sensing 
data (i.e., AOD, meteorological, land cover/use, and socio-economic 
factors for 2011–2019), we produced annual PM2.5 products at a 1-km 
resolution for China. We investigated the long-term spatiotemporal 
variations of PM2.5 across China since the implementation of the air 
pollution control policies. Overall, in this study, we aimed to address 
four specific research questions regarding the robust PM2.5 estimations 
and variation analysis:  

1. How well does the STENN model performance for PM2.5 estimations 
compared with previous studies?  

2. How well does the model perform for extrapolating PM2.5 for the 
years and regions without ground-based monitoring?  

3. Do the PM2.5 products produced in this study have reliable accuracy 
and stability?  

4. How did the PM2.5 distribution in China change between 2014 and 
2020? 

2. Materials and methods 

The workflow of this study is presented in Fig. 1. The data used in the 
study included AOD products, as well as ten variables related to mete-
orology, land cover, and socio-economy to capture their relationships 
with PM2.5 concentrations. 

2.1. PM2.5 measurements 

The 24-hour average PM2.5 measurements at ground-based observed 
stations across China from 2013 to 2020 were obtained from the China 
National Environmental Monitoring Center (CNEMC, http://www. 
cnemc.cn/). The number of stations increased from 835 in 2013 to 
1,700 by the end of 2020. As indicated in Fig. 2, more monitoring 
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stations are distributed in northern and southeastern China, with fewer 
stations distributed in southwestern and northwestern China. 

2.2. MODIS MAIAC AOD data 

MODIS has collected over 20 years of global columnar aerosol 
properties while aboard the Terra and Aqua since 2000 and 2002, 
respectively. Recently, the advanced Multi-angle Implementation of 
Atmospheric Correction (MAIAC) algorithm has been employed in the 
MODIS instrument, which provides daily AOD products with high 
spatial resolution. The MAIAC algorithm combines the time series and 
spatial analysis to help improve the quality of cloud and snow detection 
and ensure good performance for aerosol retrievals and atmospheric 
corrections over both dark vegetated surfaces and bright deserts (Lya-
pustin et al., 2018). The MODIS Collection 6 MAIAC AOD product 
(MCD19A2) in China from 2011 to 2019 was obtained from the Land 
Processes Distributed Active Archive Center (LP DAAC, https://ladsweb. 
modaps.eosdis.nasa.gov/) in our study. The data are produced daily at a 
1-km resolution and provide quality assurance (QA) to ensure retrieval 
quality. The AERONET AOD data were also used to validate the accuracy 
of the MAIAC AOD (Text S1 and Fig. S1 for details). Subsequently, the 
550 nm wavelength AOD was used following projection definition and 
reprojection. Finally, the AOD data were mosaicked to obtain the 
products for all of China. 

2.3. Ancillary data 

2.3.1. Meteorological data 
The distribution and chemical and optical properties of PM2.5 are 

strongly affected by the meteorological conditions (Chen et al., 2020b; 
Liu et al., 2009). Consequently, we selected six variables related to 
meteorology for 2011 to 2019: surface air relative humidity (RHU), 2-m 
surface air temperature (TEMP), surface pressure (P), precipitation flux 
(PRE), boundary layer height (BLH), and 10-m wind speed (WS). The 

data were obtained from the reanalysis products (Hersbach et al., 2020) 
developed at the European Center for Medium Weather Forecasting 
(ECMWF, https://www.ecmwf.int/). The dataset was tested for high 
reliability in China (Guo et al., 2016; Liu et al., 2021; Zhou et al., 2018). 

2.3.2. Land cover related and socio-economic data 
The land cover and socio-economic variables, including the 

normalized difference vegetation index (NDVI), digital elevation model 
(DEM), land use/cover change (LUCC), and population distribution 
(POP) obtained from the Resource and Environment Science and Data 
Center (http://www.resdc.cn/), were used in our study to better esti-
mate the distribution of PM2.5 (Table S2 for details and sources of these 
data). 

A correlation significance test was conducted to ensure a significant 
correlation between the PM2.5 concentrations and the selected variables. 
All the explanatory variables passed the correlation significance test 
(significant confidence at the 0.01 level). AOD (r = 0.497) and PRE (r =
− 0.302) were significantly correlated with the PM2.5 concentrations 
(Table S3). To test the sensitivity of the selected variables, the idea of 
Gini index (Nembrini et al., 2018) was adopted. The basic idea is to 
remove each variable in turn and observe the change (increase/ 
decrease) in the residual sum of squares (RSS) to quantify the impor-
tance of that variable. 

2.4. Data processing 

The 24-hour PM2.5 observations were averaged over a year for the 
annual estimation. To encode the data into a time series format for 
inputting into the temporal module structure, the discontinuous PM2.5 
station data were removed. For the model fitting and testing, the multi- 
source remote sensing products (i.e., AOD, meteorological, land use/ 
cover, and socio-economic data) were first preprocessed to match the 
annual PM2.5 ground-level observations. The final number of matched 
samples was 10,647 from 2013 to 2020. For the model estimation, the 

Fig. 1. Workflow of current study.  
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bilinear interpolation method was used to resample the meteorological, 
LUCC, and DEM data with 1-km grid cells. The annual AOD values and 
meteorological data were calculated using the arithmetic average 
method to ensure consistency in the spatiotemporal resolution of envi-
ronmental variables (the spatial and temporal resolutions are 1 km and 
annual, respectively). The data were processed using ArcGIS 10.3 and R. 

2.5. Deep learning framework for PM2.5 estimation 

To account for the complex temporal dependency and spatial het-
erogeneity of PM2.5, a three-component spatiotemporal enhanced neural 
network (STENN) framework with the ability to predict PM2.5 concen-
trations across China was developed (Fig. 3). This improved deep 
learning model utilizes the multi-temporal and multi-source remoting 
sensing products as well as PM2.5 ground observations, as inputs, ac-
quires spatial signals according to the spatial correlation, obtains tem-
poral features through the LSTM structure, and enhances the 
spatiotemporal features through the attention mechanism. Finally, the 
PM2.5 concentrations at the next time step are predicted as outputs. 
Furthermore, the framework also has the capacity for spatial general-
ization, which can extend the site-level PM2.5 predictions to the national 
level with 1-km-resolution. The three components of the model frame-
work are the spatial, temporal, and enhanced modules. 

2.5.1. Spatial module 
Although deep learning models perform well in time series pre-

dictions, they need to be improved to handle the spatial correlation and 
heterogeneity of spatial objects in the spatial estimation of PM2.5. As a 
result, we first introduced the spatial signal (SS) in the spatial module (Li 
et al., 2017a). The SS can be calculated as: 

SSi =

∑n
j=1

1
d2

ji
Xj

∑n
j=1

1
d2

ji

(1)  

where Xj refers to the PM2.5 concentrations of point j which is near the 
target data point i, dji is the distance between points i and j, and n rep-
resents the number of the nearest points to point i. The determination of 
n is essential for measuring the spatial correlation; we made different 
attempts which can be seen in the supporting information (Table S4). 
The performance of the model has no significant change when n changes 
and the model performs best when n is 3. 

The dij is defined as the Euclidean distance, calculated using the 
coordinates of points i (xi, yi) and point j (xj, yj), 

dij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − xj)
2
+ (yi − yj)

2
√

(2) 

The spatial signal considers the influence of several near observed 
points j (j = 1, 2, …) near the target point i, and uses distance weighting 
to enhance or weaken the influence of the nearby observed points. 

Fig. 2. Locations of PM2.5 ground monitoring stations (orange dots), Aerosol Robotic Network stations (green dots), and classification of seven geographical regions 
in China (green borders) and the main regions mentioned in the study. The Fenwei Plain includes parts of Shaanxi Province, Shanxi Province and Henan Province. 
The YRD includes Shanghai, Jiangsu Province, Zhejiang Province and Anhui Province. The PRD refers to parts of Guangdong Province. The YGP mainly covers 
Guizhou Province, Yunnan Province, northern Guangxi, and the border areas of Sichuan province. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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Because observations nearby are more informative than those farther 
away (Fotheringham et al., 2002), the observed point j near to point i 
was assumed to have a greater effect on the PM2.5 estimation of point i 
than the points located farther from object point i. 

The spatial signal, along with other preprocessed variables, at each 
time node t was then encoded as a vector xt , that is, [v1,v2,…,vn], which 
consists of multiple environmental variables. The input of the predicted 
framework is the time sequence [x1,x2,…,xT] , where T is the time step 
length fed into the model structure of the next component. 

To validate whether the spatial signal can improve the PM2.5 esti-
mation accuracy, we established a model without SS as a comparison. 
The results are presented in Table S5. There is a considerable decrease in 
the model accuracy without the spatial signal. 

2.5.2. Temporal module 
To better capture the abstract temporal features from the input 

dataset, we built a Bidirectional LSTM (BiLSTM) model in the temporal 
module. 

As an evolution of RNN, the LSTM model (Hochreiter and Schmid-
huber, 1997) compensates for the exploding or vanishing gradient 
problem in the long sequence data processing of RNN (Zhang, 2019). 

The key idea of LSTM is the adaptive gating mechanism, which de-
termines whether and to what extent the status of the LSTM block is 
updated. Each LSTM block containes a forget gate ft, which determines 
how much information is retained from time step t-1, an input gate it ,
which decides how much information is stored from the current time 
step t, a cell state Ct, which updates the current cell state, and an output 
gate ot , which determines how much information in the current cell state 

Ct is transferred to output. 
The LSTM equations at time step t can be demonstrated as: 

ft = σ(Wf ⋅[ht− 1, xt] + bf ) (3)  

it = σ(Wi⋅[ht− 1, xt] + bi ) (4)  

Ct = ft*Ct− 1 + it*tanh(WC⋅[ht− 1, xt] + bC ) (5)  

ot = σ(Wo⋅[ht− 1, xt] + bo) (6)  

ht = ot*tanh(Ct) (7)  

where ft , it, ot, and Ct denote the vectors of the forget gate, input gate, 
output gate, and cell state; Wf ,Wi,WCandWo are the weights; bf , bi, bc, 
and bo represent the bias vector of the corresponding gate and cell state, 
respectively; ht− 1 and ht are the output vectors at different time steps t 
and t-1; xt is the current input, [ht− 1, xt ] combines two vectors into one 
longer vector; σ and tanh are regarded as the activation functions. 

Bidirectional LSTM (Bi-LSTM) is an extension of LSTM, which 
changes the defect of the time sequence only flowing forward in LSTM, 
allowing the time sequence to flow forward and backward (Xu et al., 
2020; Zhou et al., 2016). In bidirectional LSTM, the output vector at 
time step t expands to two vectors: hforward

t and hbackward
t . The two vectors 

from opposite time directions combine to create the final output vector 
[hforward

t , hbackward
t ], as ht. 

2.5.3. Enhanced module 
After extracting the spatiotemporal information of the input features, 

Fig. 3. The overall architecture of the STENN model for PM2.5 estimation.  
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the attention layer is built to selectively focus on more important in-
formation from the multi-source environmental variables. The attention 
mechanism first obtains the attentional vector h̃t by combining the in-
formation of the input vectors ht and target yt. Then, the Softmax 
function is used to calculate the weight value αt. Finally, the adjusted 
vectors h*

t obtained from the weighted sum are based on the weight 
value αt. The calculation is as follows: 

h̃t = tanh(WC[yt; ht]) (8)  

αt = softmax(Wsh̃t) (9)  

h*
t =

∑T

1
αtht (10)  

where the WC and Ws are the model parameters for the calculation, tanh 
represents the activation function (Luong et al., 2015). 

In this study, we used Keras, a deep learning API in Python, to 
employ the STENN model to predict PM2.5. All data were first scaled by 
calculating the mean and standard deviation of the dataset being fed into 
the model. The temporal module contained three bidirectional LSTM 
layers with 512 hidden units, and there was one attention layer in the 
enhanced module. To prevent overfitting, we set one dropout layer in 
the enhanced module. More details related to the deployment of the 
model are provided in Table S6. 

Because the environmental variables are all derived from multi- 
source satellite-based products and are available at a fine spatial reso-
lution, it is possible for spatial generalization. These derived variables 
could be further used to feed into the model and they serve to map the 
PM2.5 concentrations at a 1-km spatial resolution. 

2.6. Model assessment and product evaluation 

Three cross-validation scheme methods were adopted to assess the 
performance of the STENN model: (1) temporal cross-validation (CV), 
(2) spatial CV, and (3) sample-based CV. To better understand the 
spatiotemporal transferability of the STENN model, model validation 
was conducted on the temporal and spatial scales. The temporal CV was 
performed by omitting one year out for validation, and the others were 
used for model fitting. The spatial CV was performed by dividing the 
dataset into calibration and validation sets according to the geograph-
ical division of China (Fig. 2) to conduct cross-validation. In the sample- 
based CV, the dataset was randomly divided into 10 folds randomly. One 
fold was used for validation and the remaining nine folds were used as 
calibration folds, and then they were rotated until ten sets were used for 
the validation once again. 

The prediction results of PM2.5 produced by the STENN model were 
compared with the estimation produced by LSTM, random forest (RF), 
Cubist model, and results provided by other researchers to verify the 
performance of the STENN model. The tuning parameters of RF and 
Cubist are presented in Text S2. 

To test the spatial generalization ability of our model and the accu-
racy of our products, we also evaluated the accuracy of our products for 
each year using the ground-based observation data and compared our 
products with the widely used 1-km PM2.5 products from Wei et al. 
(2021) and van Donkelaar et al. (2016). They produced the annual PM2.5 
products, which can be downloaded from the ChinaHighPM2.5 dataset 
(https://weijing-rs.github.io/product.html) and SEDAC (Socioeconomic 
Data and Applications Center, https://sedac.ciesin.columbia.edu/). The 
spatial resolution of both products is 1 km. 

Some commonly used indices such as the determination coefficient 
(R2), RMSE, mean absolute error (MAE), relative prediction error (PRE, 
%), and predicted bias were calculated to evaluate the performance of 
the different models (Text S3 for details). 

2.7. Trend analysis methods 

In the current study, we integrated the Theil-Sen Median trend 
analysis method (Theil, 1950; Sen, 1968) and the Mann-Kendall (MK) 
test (Kendall, 1938) to analyze the trend of the annual PM2.5 changes at 
the pixel scale. The Theil-Sen median slope determines the median of the 
slopes between all n(n− 1)

2 pairwise combinations over time and is based 
on nonparametric variables; therefore, it is particularly effective for 
estimating trends in small series (Fensholt et al., 2012; Jiang et al., 
2015). The slope of the Theil-Sen Median represents the increase or 
decrease in the PM2.5 concentrations over 7 years from 2014 to 2020 for 
each pixel, which can be obtained by: 

SPM2.5 = median(
PM2.5 j − PM2.5 i

j − i
) (11)  

where PM2.5 j and PM2.5 i refer to the PM2.5 values for years j and i, SPM2.5 
represents the Theil-Sen median slope, with a positive SPM2.5 indicating a 
rising trend and a negative SPM2.5 indicating a decreasing trend. 

The MK test is a non-parametric statistical test used to measure the 
significance of the trend. It offers a great advantage in that outliers do 
not interfere with the results (de Jong et al., 2011). The Z-test statistics 
can be calculated as: 

Z =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅
var(S)

√ , S > 0

0, S = 0
S + 1
̅̅̅̅̅̅̅̅̅̅̅̅̅
var(S)

√ , S < 0

(12)  

S =
∑n− 1

i=1

∑n

j=i+1
sgn(PM2.5j − PM2.5i) (13)  

var(S) =
n(n − 1)(2n + 5)

18
(14)  

where n is the duration of time, and sgn represents a sign function. The 
index Z changs in the range of (− ∞, +∞). |Z| > u1− α

2 
indicates that the 

time series exhibits significant variations at the level of α. In this study, 
α = 0.05. 

3. Results and discussion 

3.1. Variable importance in modeling 

The results of the variable-sensitivity tests are presented in Fig. 4. 
The importance mentioned here refers to the importance of each vari-
able in the STENN model design and the reduction of the model accuracy 
after each variable is removed. Nevertheless, this importance cannot 
fully represent the physical correlation, although this technique is 
widely used to quantify the importance (Boulesteix et al., 2012). Ac-
cording to the variable selection strategy of Wei et al. (2021), variables 
with importance scores lower than 2% should be excluded. The impor-
tance scores of all the variables in this study were greater than 2%; 
consequently, all variables were used in the final model fitting. 

The most important variable in the model fitting is AOD, which is 
known to have a high correlation with the PM2.5 concentrations (Wang 
and Christopher, 2003). Meteorological variables (i.e., TEMP, RHU, 
PRE, BLH and P) also have a crucial influence on PM2.5. The thick 
temperature inversion layer, lower precipitation, and lower BLH 
increased the air stagnation, stabilizing the polluted air over the area 
without diffusion (Zheng et al., 2015; Wang et al., 2018). High relative 
humidity facilitated the formation of secondary aerosols, which are also 
a significant part of PM2.5 (Zhang et al., 2015). These results indicate 
that the highly sensitive variables within STENN have physical 
interpretability. 
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3.2. Model and product assessment 

3.2.1. Spatiotemporal transferability 
Temporal and spatial CVs were also conducted to estimate the 

spatiotemporal transferable power of the STENN model. Fig. 5 presents 

the result of temporal CVs of the annual PM2.5, estimated from ground- 
based observations from 2015 to 2020 in mainland China. The perfor-
mance of the STENN model for each year was not consistent and was the 
best for 2020, with the estimation uncertainty decreased largely (i.e., 
RMSE = 4.25 μg m− 3, MAE = 2.88 μg m− 3, and RPE = 12.16%). This was 

Fig. 4. The importance of independent variables selected for PM2.5 estimations.  

Fig. 5. Density scatter plots of the results of temporal CV using the STENN model in 2015 to 2020 across China. The color of points represents the percentage of the 
total number of points in this value range. A higher percentage means more data points are within this value range. Statistical metrics (i.e., the fitting lines, 1:1 lines, 
R2, RMSE, MAE and RPE) and the linear regression relationships are given. Units of RMSE and MAE are μg m− 3. 
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primarily due to the improved air quality in 2020, which reduced the 
extremely high concentrations of PM2.5. In general, the estimation re-
sults were well consistent with the surface observations (R2 = 0.78–0.87, 
slope = 0.80–0.89) over different years, with the RMSE and MAE values 
ranging from 4.25 to 7.00 μg m− 3 and 2.88 to 4.81 μg m− 3, respectively. 

The absolute biases of the temporal CVs are provided in Fig. S3. 
STENN showed the best performance for 2020, with almost 80% of the 
absolute bias of less than 4 μg m− 3. In contrast, the worst performance 
was observed for 2017, with higher absolute biases distributed in central 
and northeastern China. 

Fig. 6. Density scatter plots of the results of spatial CV using the STENN model in seven geographic regions (i.e., northwest, northeast, north, central, east, south, and 
southwest) across China. The linear regression relation fitting lines, 1:1 lines, sample size (N), R2, RMSE, and MAE are given. Units of RMSE and MAE are μg m− 3. 
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The spatial CV results of the STENN model for annual PM2.5 pre-
dictions over seven geographic regions in China are presented in Fig. 6. 
The model exhibited different performances for each region. The best 
prediction performance was observed in the eastern and central China, 
which had numerous evenly distributed ground sites, with the high R2 

values of 0.85 and a low estimation bias (i.e., RMSE = 6.18 μg m− 3, 
MAE = 4.22 μg m− 3 in central China). By contrast, the model performed 
worst in northwestern China with fewer sites and sparse distribution, 
with the R2, RMSE, and MAE of 0.70, 10.71 μg m− 3, and 6.91 μg m− 3, 
respectively. The annual spatial CV results are provided in Fig S4. The 
validation results in northern China fluctuated the most over the years 
due to the significant variations in PM2.5 concentrations during the 7 
years. 

Several factors may have contributed to the model performance. In 
regions with sparsely distributed observations, the effect of spatial sig-
nals in response to the spatial correlation of PM2.5 would decrease 
because of the greater distances. In contrast, in the regions with 
numerous and densely distributed observations, the spatial signal could 
better reflect the variations in PM2.5 caused by spatial correlation and 
heterogeneity. Second, the meteorological conditions and surface 
coverage in different regions were diverse, especially in Xinjiang, in 
northwestern China, which has a typical continental warm temperate 
arid climate (Peng et al., 2019) and is varies considerably from the other 

regions of China. This also led to poor spatial CV results in northwestern 
China. In addition, the coverage of the AOD data also affected the re-
sults. The MAIAC AOD has a relatively high quality control and removes 
the AOD pixels in the ice/snow cover areas (Tao et al., 2019). In 
northeast and southwest China, owing to the snow cover, the AOD data 
in winter had numerous missing values (Fig. S5 (a)). AOD values were 
also missing in southern China because of the cloud contamination. 
When the arithmetic average method was used for the annual AOD 
synthesis, errors were inevitably introduced, which also caused a bias in 
spatial CV for the PM2.5 estimation. 

Similar studies have also examined the spatiotemporal trans-
ferability of their models. For example, He et al. (2021) used a temporal 
CV to test their model’s predictive power. For estimations at the annual 
scale, the temporal CV R2 reached 0.75. The same validation was also 
conducted by Wei et al. (2021). They compared the temporal trans-
ferability of four traditional models (i.e., MLR, LME, GWR, and two- 
stage model) with STRF (Wei et al., 2019a) and the STET model 
developed in their study. Their model had the best performance, with an 
R2 value of 0.82 at the annual scale. Though these models also 
demonstrated temporal transferability, the STENN model performed the 
best with an average R2 value of 0.84 in the temporal CV. These results 
indicate that our model accurately predicted the PM2.5 in the year 
without the observation data. 

Fig. 7. Density scatter plots of the results of sample-based CV using the STENN (a), LSTM (b), RF (c), and Cubist (d). The dashed and solid lines denote best-fit lines 
from linear regression and 1:1 lines, respectively. The color of points represents the percentage of the total number of points in this value range. A higher percentage 
means more data points are within this value range. The R2, RMSE, MAE and RPE are also given. Units of RMSE and MAE are μg m− 3. 
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Regarding the spatial transferability, the validation methods vary in 
different studies (Li et al., 2020b). Li et al. (2017a) used leave-one- 
province-out cross-validation (LOPOCV), and the R2 value was 0.54. 
He and Huang (2018) adopted the space CV (i.e., randomly omitted 10% 
of the monitoring stations) to test the spatial predictive power of their 
model, with an R2 value of 0.75. Wei et al. (2019a) adopted the same 
method as He and Huang (2018), and the R2 value was 0.63. The R2 of 
the spatial CV of our STENN model reached 0.81, indicating a strong 
spatial transferability. The difference in accuracy may also be partly due 
to the different standards of the spatial CV. Therefore, it is necessary to 
establish reasonable and general validation standards. 

3.2.2. Overall accuracy 
The overall accuracy was evaluated using a sample-based CV. The 

density scatter plots of the results are presented in Fig. 7. By combining 
the spatiotemporal variations, the STENN model performed the best, 
with the lowest RMSE, MAE, and RPE values of 5.84 μg m− 3, 3.97 μg 
m− 3, and 12.74%, respectively. The STENN model yielded a higher 
average R2 of 0.89, which was superior to that of LSTM (0.84), RF 
(0.83), and Cubist (0.83). This conclusion can also be drawn from the 
distribution of the scattered points. The fitted regression line of the 
STENN model demonstrated a close tendency to the 1:1 line. The per-
formances of the other three models were generally similar. Although 
they all have considerable accuracy, without spatial signals introduced, 
the shortcomings of a poor predictive ability for abnormally high and 
low values are also evident (Fig. S2). 

Other similar studies that have predicted PM2.5 concentrations in 
China are listed in Table 1. The R2 values of these studies varied between 
0.64 and 0.89, and the RMSE ranged between 5.4 μg m− 3 and 32.98 μg 
m− 3 in the validation dataset. The GWR model exhibited the worst 
performance. The GTWR model and timely structure adaptive modeling 
(TSAM) model, which are two improved forms of the GWR model, 
improved significantly compared with the GWR model. XGBoost (R2 =

0.86) and RF (R2 = 0.81) were proven to have a better ability to estimate 
PM2.5. In comparison, the improved versions based on geographical 

factors, including GTW-GRNN (Geographically and temporally 
weighted generalized regression neural network), Geo-DBN (Deep belief 
network), and STRF, achieved higher accuracy with R2 values of 0.80, 
0.88, and 0.85, respectively, indicating the value of improving the 
model based on the characteristics of the research objects. 

Overall, the STENN model demonstrated the best performance for 
estimating PM2.5, with the highest value of R2 (0.89) and a low value of 
RMSE (5.84 μg m− 3). These results indicated that the model had the 
capacity to better estimate the PM2.5 concentrations in China in different 
years. Compared with the traditional geostatistical models (i.e., GWR, 
stage-1, and stage-2), the STENN model built a data-driven neural 
network structure and had the ability to learn the data features. 
Furthermore, because the recurrent neural network could powerfully 
process the time series, the ability of the model to extract the time 
dependence of PM2.5 was enhanced, and the model outperformed the 
machine learning models (e.g., RF and Cubist) (Yuan et al., 2020). 
Meanwhile, the spatial signal introduced by the STENN model accounts 
for the influence of the spatial heterogeneity and spatial correlation, 
which makes the prediction results more stable; therefore, the prediction 
accuracy surpassed the general neural network. 

3.2.3. Product assessment 
Fig. 8 presents the assessment results of our 1-km resolution annual 

products against the average annual observations from the ground sta-
tions. A series of statistical metrics were calculated by matching the 
spatial-temporal PM2.5 values of our products with the observation 
values of the ground monitoring stations. The products produced high 
accuracy when compared with the ground-observed PM2.5. Over-
estimations and underestimations accounted for 45.88% and 54.12%, 
respectively. Most of the predicted biases (76.1%) were distributed 
within ±5 μg m− 3. More than 90% (98%) of the stations had low esti-
mation errors, with the RMSE (MAE) values of less than 12 μg m− 3, 
indicating the spatial generalization ability of the STENN model. The 
MAE and RPE values were low in most areas of mainland China, with a 
few exceptions in Xinjiang and Tibet provinces. The spatial distribution 
of the predicted bias and RMSE also demonstrated variability. Larger 
estimation errors (i.e., RMSE > 15 μg m− 3) were observed with our 
products for the northwest, northeast, and northern parts of China. The 
estimation errors in the northwest and northern parts of China may be 
attributed to the extremely high PM2.5. The sparse distribution of PM2.5 
observation stations in northwestern China also increased the error in 
the model estimation. In addition, the quality and coverage of AOD also 
have a significant impact on estimation of PM2.5. The two high RPE 
values in Tibet in Fig. 8(d), which are also reflected in two outliers of 
over 100 μg m− 3 in the spatial CV of the southwest (Fig. 6), are primarily 
caused by the missing AOD data in this area (Fig. S5 (b)). However, due 
to the low PM2.5 concentrations in Tibet, the abnormal results are not 
reflected in the predicted bias (i.e., Fig. 8 (a)) and RMSE (i.e., Fig. 8(b)). 
The large estimation errors for northeast China may be contributed from 
the uncertainties in the AOD products due to the bright surface covered 
by snow in winter. 

Fig. 9 presents a detailed comparison among the different PM2.5 
products (Wei et al., 2021; van Donkelaar et al., 2016; van Donkelaar 
et al., 2018), the ground-measured PM2.5 concentrations, and ours for 
2016. Considering the availability of PM2.5 products and the typicality of 
PM2.5 pollution, the central China and the east coast of China were 
selected as examples. For the east coast of China, three products accu-
rately estimated the PM2.5, especially for the estimation of high values. 
The three products exhibited close agreement over most of the areas and 
were highly consistent with the ground-measured PM2.5. As presented in 
Fig. 9(a-c), the high PM2.5 concentrations were predominantly distrib-
uted in the upper left corner (southwestern part of Hebei Province), 
which is consistent with the spatial pattern of PM2.5 observed at the 
monitoring stations (Fig. 9(d)). As shown in Fig. 9(a), the Yangtze River 
section in the Anhui and Jiangsu provinces had distinctly high values 
with long and narrow strip distributions, which did not match the 

Table 1 
Comparisons of model performance in PM2.5 estimation for China at national 
scale.  

Reference Temporal 
period 

Spatial 
resolution 
(km) 

Model Model 
validation 

R2 RMSE 

[1] 2004–2013 10 Stage-1:LME  0.78  27.99 
Stage-2:GAM  0.79  27.42 

[2] 2012–2013 10 GWR  0.64  32.98 
[3] 2013 10 Gaussian  0.81  21.87 
[4] 2014–2015 10 TSAM  0.80  22.75 
[5] 2014–2015 3 XGBoost  0.86  14.98 
[6] 2015 3 Geo-GRNN  0.82  16.93    

Geo-BPNN  0.84  15.23    
Geo-DBN  0.88  13.03 

[7] 2015 10 GW-GRNN  0.78  18.19    
GTW-GRNN  0.80  17.38 

[8] 2015 3 GTWR  0.80  18.00 
[9] 2015–2016 3 Bayesian 

Maximum 
Entropy-GWR  

0.88  11.39 

[10] 2016 1 RF  0.81  17.91   
1 STRF  0.85  15.57 

[11] 2000–2016 10 ML-GAM  0.77  10.1 
[12] 2000–2018 1 ASTR  0.77  8.55 
[13] 2013–2019 1 Three-stage RF  0.88  15.73 
[14] 2019 1 LSTM  0.84  5.40 
This 

study 
2014–2020 1 STENN  0.89  5.84 

[1] Ma et al., 2016; [2] Ma et al., 2014; [3] Yu et al., 2017; [4] Fang et al., 2016; 
[5] Chen et al., 2019b; [6] Li et al., 2017a; [7] Li et al., 2020a; [8] He and Huang, 
2018; [9] Xiao et al., 2018; [10] Wei et al., 2019a; [11] Xue et al., 2019; [12] He 
et al., 2021; [13] Huang et al., 2021; [14] Wang et al., 2021. 
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observations at the monitoring stations. The bias is consistent with the 
bias of AOD in 2016 (Fig. S6). In central China, Fig. 9 (e) and (g) are both 
in agreement with the ground measurements. However, a significant 
underestimation can be seen in the products produced by van Donkelaar 
et al. (2016, 2018) (Fig. 9(f)), and the spatial distribution of PM2.5 
concentrations is relatively smooth, which is dissimilar to the estimation 
results of the other two products. In contrast, our products provided a 
better fit with the ground measurements of PM2.5, and the distribution 
was continuous with no abnormal changes and was able to present a 
more detailed information. 

The bias of the two other products can be attributed to several 

factors. First, the Space-Time Extra-Tree (STET) method used by Wei 
et al. (2021) did not consider the time series. It only used data from a 
designated year to predict PM2.5 in the same year, with environmental 
variables from the same year as ancillary. Among these environmental 
variables, AOD was the most important covariate for estimating PM2.5. 
However, the MODIS AOD products yielded a high bias for deserts and 
water covers due to the surface brightness and sub-pixel water pollution 
(Abdou et al., 2005) (Fig. S6). This bias may be further amplified 
through the continuous splitting of the tree when training the model and 
causing a further estimation bias. Furthermore, van Donkelaar et al. 
(2016) used multi-satellite-derived AOD products (i.e., MODIS, MISR, 

Fig. 8. The spatial distribution of the mean (a) predicted bias, (b) RMSE, (c) MAE, and (d) RPE of the 2014–2020 multi-year products compared to the (e) mean 
PM2.5 concentrations observed by ground-based stations. 
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SeaWiFS, and CALIPSO) but did not introduce any other auxiliary var-
iables that have a higher spatial resolution and more information (e.g., 
meteorology and land cover data). This limited their products from 
providing more detailed information on PM2.5. 

3.3. Spatial pattern of PM2.5 in China 

Based on multi-temporal satellite products, applying the STENN 
model, products regarding the PM2.5 distributions, with a 1-km resolu-
tion were produced over whole mainland China from 2014 to 2020. The 
estimated spatial distribution of the annual mean PM2.5 concentration 
distribution for each year from 2014 to 2020 are presented in Fig. 10 (a- 
g), and the 7-year mean PM2.5 concentration distribution is shown in 
Fig. 10(h). 

The average PM2.5 concentrations between 2014 and 2020 though-
out China was 32.95 ± 13.88 μg m− 3. In terms of regions, the multi-year 
averaged PM2.5 concentrations in the Beijing-Tianjin-Hebei (BTH) re-
gion, the Yangtze River Delta (YRD) region, and the Pearl River Delta 
(PRD) region were 49.26 ± 16.13 μg m− 3, 41.56 ± 11.19 μg m− 3, and 
28.35 ± 4.62 μg m− 3, respectively. Air quality exhibited a trend of 
improvement over this period. The highest annual PM2.5 concentration 
across mainland China was 39.46 ± 16.02 μg m− 3 in 2014 and the 
lowest was 26.18 ± 14.15 μg m− 3 lain in 2020. 

The spatial distribution patterns of the PM2.5 concentrations in China 
for multiple years were similar, where the most polluted areas were 

indicated in northern China, northwest China, and a small part of central 
China, where the main provinces and cities include Beijing, Tianjin, 
Hebei, Henan, Xinjiang, and Sichuan. The primary cause of severe air 
pollution in these areas is anthropogenic emissions (e.g., fossil fuel 
combustion) (Lv et al., 2021; Ye et al., 2018). In 2019, the production of 
crude steel in the high pollution areas (i.e., the BTH region, and Fenwei 
plains) still exceeded 50% of the national production level, of which the 
rank of production in Hebei remained the highest in China. Further-
more, secondary aerosol formation (e.g., sulfate, which has been sug-
gested as a significant component of PM2.5) produced by the interactions 
between SO2 and NO2 (Wang et al., 2020c) and NH3 (Gu et al., 2021) 
also become an substantial source of PM2.5 pollution. In terms of natural 
conditions, unfavorable meteorology (i.e., low wind speed) and topog-
raphy, such as basins that do not favor the dispersion of fine particulate 
matter, were also key contributors to PM2.5 pollution (Bao et al., 2019; 
Sulaymon et al., 2021). The lowest average PM2.5 values were located in 
southwestern China (i.e., Yunnan-Guizhou Plateau) and the southeast 
coastal region of China (i.e., PRD). The fine air quality could be attrib-
uted to both the natural conditions (e.g., flat terrain, adequate precipi-
tation, and the monsoon climate) and policy management. (The detailed 
locations of these regions are indicated in Fig. 2) 

3.4. Spatiotemporal variations and trends 

At the end of 2013, the Chinese government implemented a five-year 

Fig. 9. Detail comparison between PM2.5 products produced by (a, e) (Wei et al., 2021), (b, f) (van Donkelaar et al., 2016; van Donkelaar et al., 2018), (c, g) our 
study, and (d, g) ground-measured PM2.5 concentrations in 2016 (The blank areas represent the rivers and water cover). 
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Action Plan on Air Pollution Prevention (2013–2017). In 2017, the 
government issued a three-year Action Plan to Win the Blue-Sky Defense 
(2018–2020). Meanwhile, the 13th Five-Year Plan (2016–2020) and 
other action plans also put forward clear control requirements for air 
pollution. In order to explore the effectiveness of the different policies 
based on the multi-year PM2.5 distribution products, the analysis was 
carried out on the spatial variability and temporal trends of the PM2.5 for 
different periods in this study based on the multi-year PM2.5 distribution 
products. Fig. 11 presents the spatiotemporal variability of PM2.5 during 
the periods 2014–2020, 2014–2017, and 2017–2020, respectively 
(Table S8 for the detailed statistics information). Compared with 2014, 

the PM2.5 concentrations had decreased in 88.79% of the total area of 
China by 2020, with the mean decreased concentrations of 13.28 μg m− 3 

and the decreased percentage reaching 33.65%. The regions that 
decreased most significantly were northern China, followed by central 
China, and the east coast. Only northwest China exhibited a slightly 
increasing trend. The spatial distribution of the PM2.5 variations differed 
among the periods. During 2014–2017, the most significant decrease 
was concentrated in northern and central China, while other areas also 
experienced a slight decrease, with the decrease ranging from 0 to 10 μg 
m− 3, which was predominantly due to the efforts of the government by 
implementing the Action Plan on Air Pollution Prevention. In contrast, 

Fig. 10. Spatial distribution of annual mean (a-g), multi-year (2014–2020) mean (h) satellite-derived PM2.5 concentrations across China.  
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the pollution situation was still severe in northwest China, with the 
PM2.5 concentrations increasing from 2014 to 2017 (Fig. 11b). 

During 2017–2020, the areas with significant decreases were 
extended to almost all of mainland China, including southwest and 
northeast China, with decreased concentrations of 0 to 30 μg m− 3, and 
the regions with the largest decline were the BTH region, PRD region, 
Fenwei Plain, and Sichuan Province (Fig. 11c). The 13th Five-Year Plan 
(2016–2020) and the Blue Sky Defense (2018–2020) played critical 
roles in the improvement of air quality during this period. The former 
plan proposed zoning policies to control air pollution. It considered 
regional differences and emphasized the reduction in the concentrations 
of particulate matter in the BTH. The latter plan listed the BTH region 
and Fenwei Plain as prior regions for the prevention and control of air 
pollution. Under the proactive PM2.5 control action, China has taken 
great efforts to reduce emissions from industries and vehicles, phasing 
out outdated industrial capacity and promoting clean fuels (Zhang et al., 

2019). These policies led to a prominent decrease in PM2.5 after 2013. In 
addition, the meteorological conditions also contributed to the regional 
PM2.5 variations. The high precipitation accelerated the PM2.5 decline in 
southeast China, and the strong northwest winds in the BTH, to some 
extent, reduced PM2.5 in 2017 (Ding et al., 2019; Chen et al., 2019a). In 
contrast, the presence of air stagnation (i.e., low wind speed, little or no 
precipitation, and shallow boundary layer heights) (Wang et al., 2018) 
events in the Sichuan province could not reduce PM2.5. Therefore, the 
impact of the different meteorological conditions and topographical 
effects should not be neglected when formulating clean air clean action 
plans. 

We also investigated the PM2.5 trend to clarify the improvement in 
air pollution in recent years. Fig. 12 presents the spatial distribution and 
frequency of the 7-year PM2.5 trend of the annual mean PM2.5. The PM2.5 
trend exhibited great variability, ranging from − 18.65 to 9.13 μg m− 3 

yr− 1. The PM2.5 concentrations tended to decrease in 99.99% of the 

Fig. 11. Spatial variation of PM2.5 concentrations during the periods (a) 2014–2020, (b) 2014–2017, (c) 2017–2020 across China.  
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statistically significant study area (p < 0.05, Fig. 12), with a mean 
decrease rate of 3.35 μg m− 3 yr− 1 at the pixel level from 2014 to 2020. 
The PM2.5 decreased most rapidly in northern China, and the decreasing 
trend was also significant in central China, the YRD, and the PRD region. 
In contrast, the PM2.5 trend in western China demonstrated a slight in-
crease with less significance (Fig. 12a, b, c). 

The PM2.5 slope trend and time series of the BTH, YRD, PRD regions, 
and mainland China are illustrated in Fig. 13. The 1st and 99th per-
centiles of the PM2.5 trends are identified by the dotted line of the box 
(Fig. 13a), which indicates that the three main regions and mainland 
China had a decreasing trend of PM2.5. The decreasing trend was most 
clearly seen in the BTH region, and the least significant was in the PRD 
region because of the relatively low PM2.5 concentrations in the PRD 
since 2014. In addition, the trend in the BTH region exhibited the 
greatest variability, with the amplitude of change exceeding the national 
level. For the time series, the PM2.5 concentrations in the BTH region 
decreased most significantly, with decreased concentrations of 30.24 ±
14.47 μg m− 3 (~45.03%) and a slope of − 0.094. According to this trend, 
it is expected that PM2.5 concentrations in the BTH region will stabilize 
under the Chinese National Ambient Air Quality Standard (CNAAQS) 
level 2 within five years. Over the years, the PM2.5 trend in the PRD 
region was consistent with that throughout China, with a slope of 
− 0.068. The slope trend in the three regions and throughout China 
showed an exponential change, from a rapid decline to a gradual steady 
change. Although the PM2.5 concentrations in China continued to 
decrease from 2013 to 2020, the change rate also decreased. Even with 
the continued improvement of air quality in China, greater efforts are 
necessary for further improvement. The Beautiful China Outlook in the 
14th Five-Year Plan (2021–2025) mentioned that by 2025, the annual 
average concentrations of PM2.5 would drop below 30 μg m− 3. Ac-
cording to the trend analysis over the study period, it is not difficult to 

achieve this goal nationwide, but for the BTH region, due to the vari-
ability in PM2.5, it is still necessary to increase control. As a result, it is 
particularly vital to carry out sub-regional management and control 
according to the pollution levels of different regions. 

4. Conclusions 

In this study, a spatially generalizable deep learning model, the 
Spatiotemporal Enhanced Neural Network (STENN), was developed to 
determine the relationship between PM2.5-AOD for mainland China by 
conflating temporal and spatial remote sensing, meteorological indices, 
and human activities. By integrating the spatial signals into the recur-
rent neural network, which is capable of processing time series, the 
model provided a geographic-data-driven approach to incorporate the 
impact of the spatial heterogeneity and time dependence of PM2.5 and 
significantly outperformed most previous models for predicting PM2.5 
concentrations (e.g., R2 = 0.89). Furthermore, the model also has robust 
spatiotemporal transferable power for extrapolating to the years and 
regions without ground-based monitoring. 

Using our developed framework, the high-quality and high- 
resolution (1 km) annual PM2.5 products covered the entire mainland 
of China from 2014 to 2020 were produced. The products exhibit high 
consistency with the surface PM2.5, and more than 90% (98%) of the 
estimations in the stations demonstrated few estimation errors, with the 
RMSE (MAE) values less than 12 μg m− 3. In addition, compared with the 
widely used 1 km PM2.5 products, our products provided better stability 
in different regions, especially in terms of high-value estimations and 
spatial continuity, demonstrating the strong spatial generalization 
ability of the model. 

Based on the multi-year high-resolution products, an analysis of the 
spatiotemporal PM2.5 variations and trends was conducted. The 7-year 

Fig. 12. Spatial distribution and frequency of PM2.5 trends for 2014–2020 across China (The areas without color indicated where are not significant at 95%). (a, b, c) 
showed the detailed information. 
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mean PM2.5 concentrations for mainland China were 32.95 ± 13.88 μg 
m− 3. The most polluted areas were observed in northern China, north-
west China, and a small portion of central China. After the imple-
mentation of different control policies of atmospheric pollution, 
compared with 2014, a decline in the PM2.5 concentrations was 
observed in 88.79% of China by 2020, with a mean decrease rate of 3.35 
μg m− 3 yr− 1, indicating the effective governance capacity of the Chinese 
government. The slope trends in the BTH, YRD, and PRD regions and 
throughout China demonstrated an exponential change trend, from a 
rapid decline to a gradual slowdown and a stable phase; therefore, in 
order to realize the Beautiful China Initiative by 2025, a more regionally 
targeted policy for air pollution management is required 

Overall, the STENN model proposed in this study fully utilizes the 
spatiotemporal variations in PM2.5 and remote sensing data, and is 
practical for generating a long-term, more detailed and reliable PM2.5 
product with high resolution, which can greatly enhance research on 
long-term PM2.5 variations and provide valuable implications for 
improving the air quality in China. 
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