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A B S T R A C T   

Previous studies have mostly focused on using visible-to-near-infrared spectral technique to quantitatively es-
timate soil cadmium (Cd) content, whereas little attention has been paid to identifying soil Cd contamination 
from a perspective of spectral classification. Here, we developed a framework to compare the potential of two 
spectral transformations (i.e., raw reflectance and continuum removal [CR]), three optimization strategies (i.e., 
full-spectrum, Boruta feature selection, and synthetic minority over-sampling technique [SMOTE]), and three 
classification algorithms (i.e., partial least squares discriminant analysis, random forest [RF], and support vector 
machine) for diagnosing soil Cd contamination. A total of 536 soil samples were collected from urban and 
suburban areas located in Wuhan City, China. Specifically, Boruta and SMOTE strategies were aimed at selecting 
the most informative predictors and obtaining balanced training datasets, respectively. Results indicated that 
soils contaminated by Cd induced decrease in spectral reflectance magnitude. Classification models developed 
after Boruta and SMOTE strategies out-performed to those from full-spectrum. A diagnose model combining CR 
preprocessing, SMOTE strategy, and RF algorithm achieved the highest validation accuracy for soil Cd (Kappa =
0.74). This study provides a theoretical reference for rapid identification of and monitoring of soil Cd contam-
ination in urban and suburban areas.   

1. Introduction 

Soil contamination with potentially toxic elements (PTEs) has been 
recognized as a global concern (Hou et al., 2017; Liu et al., 2013; 
McBratney et al., 2014; Zhang et al., 2019c; Zhao et al., 2015). In recent 
decades, the rapid industrialization and urbanization exert a great 
impact on the urban soil characteristics, which result in emissions of a 
large amount of pollutants, inevitably affecting the human health and 
urban ecosystems (Cheng et al., 2019; Hong et al., 2020; Li et al., 2018; 
Yuan et al., 2020). Urban soils mainly exist in parks, gardens, and other 
green spaces in the city, which are generally the repositories of pollut-
ants. Urban residents have frequent and direct contact with the soils in 

these places (Li et al., 2018; Luo et al., 2012). Suburban soils are the 
spatial transition zones connecting urban and rural areas, and are vital 
in safeguarding food security and balancing local surrounding ecological 
systems (Hong et al., 2019; Wu et al., 2020). As the provincial capital of 
Hubei Province, Wuhan City has a large population density and devel-
oped industry. Since the beginning of the 21st century, Wuhan has 
experienced a rapid process of population growth, industrial develop-
ment, and urbanization (Zhang et al., 2018). Soil cadmium (Cd) can pose 
a serious threat to human health, as it is a possible risk factor to human 
by causing lung cancer and other chronic diseases (Poggio et al., 2009; 
Proctor et al., 2006). Therefore, accurate diagnosing of suspected 
contaminated samples above the alert limit (i.e., a threshold) in urban 
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and suburban soils is necessary for risk assessment. 
Commonly, the measurement of soil Cd concentration requires field 

sampling campaign, followed by laboratory chemical analysis. This 
approach faces challenges of being labor-intensive, time-consuming, 
environmentally unfriendly, and high expertise demanding, which do 
not allow meeting the needs for rapid measurement and high density 
sampling for soil Cd (Jia et al., 2021; Lassalle et al., 2020; Meng et al., 
2020; Tan et al., 2020). Proximal soil sensing techniques like 
visible-to-near-infrared (Vis–NIR) spectroscopy for estimating PTEs 
have attracted the attention of researchers, mainly because of the ad-
vantages of its less sample preparation and rapid characterization 
(Cheng et al., 2019; Gholizadeh et al., 2018; Lassalle et al., 2020; Nawar 
et al., 2019; Ng et al., 2020; Sawut et al., 2018; Shi et al., 2014; Shi et al., 
2017; Sun and Zhang, 2017; Todorova et al., 2014; Wang et al., 2018; 
Wang et al., 2014; Zhang et al., 2019b). There are various studies 
adopting Vis–NIR technique to estimate soil Cd, with sampling sites 
covering suburban soils, agricultural soils, mining regions, and sewage 
irrigation areas (Fig. 1). However, very few studies have focused on 
urban soils. Besides, the goal of all these studies was to quantitatively 
estimate soil Cd content. For practical applications concerning the 
qualitative discrimination of soil Cd contamination related to human 
health risk assessment and environmental ecosystem management, 
directly diagnosing of soil Cd contamination from Vis–NIR spectral data 
may be more efficient than quantifying soil Cd. Here’s an interesting 
question: why don’t we link Vis–NIR signals directly to soil Cd 
contamination so as to address the practical concerns? Therefore, by 
adopting the threshold of risk alarm, the quantitative estimation of soil 
Cd is converted into the multivariate classification for diagnosing soil Cd 
contamination. 

Soil Vis–NIR spectral data having hundreds or thousands of wave-
length variables are relatively of weak and broad absorption bands, 
mainly because of overtones and combinations of fundamental vibration 
occurring in the mid-infrared spectral region (Stenberg et al., 2010; 
Viscarra Rossel and Behrens, 2010; Viscarra Rossel et al., 2016). Many 
challenges arise during the application of the Vis–NIR spectral data to 
identify soil Cd contamination, such as the data high-dimensionality and 
the selection of most robust classification model (Shi et al., 2017). Linear 
classification models, such as partial least squares discriminant analysis 
(PLSDA), are often used in spectral modeling, due to their simple 
structure and easy interpretability (Yu et al., 2018). Nonparametric 
machine learning techniques, such as random forest (RF) and support 
vector machine (SVM), are versatile in modeling complicated and 
nonlinear relationships with high spectral dimensionality (Almeida 
et al., 2019; Nawar and Mouazen, 2017; Ng et al., 2020; Ng et al., 2019; 

Viscarra Rossel and Behrens, 2010). In addition to identifying the best 
classification algorithm, an equally important challenge in spectral 
analysis is to select the most informative spectral subset and get rid of 
redundant wavebands (Shi et al., 2017). The common practice of the use 
of the whole spectrum to train a model would be relatively complex, and 
potentially produce inefficient model interpretations (Raj et al., 2018; 
Shi et al., 2014; Vohland et al., 2014). Moreover, some spectral variables 
may contain irrelevant and even noisy information, which may distort 
the true relationship between soil Cd and predictors from Vis–NIR 
spectra. To overcome these shortcomings of the full-spectrum analyses, 
variable selection approaches should be explored. Among existing al-
gorithms, the Boruta feature selection has the advantages of simplifying 
model structure, maximizing model performance, and facilitating model 
interpretation (Kursa et al., 2010; Kursa and Rudnicki, 2010; Prasad 
et al., 2019). 

With the wide expansion of data availability in soil science, the 
problem of learning from imbalanced data with skewed distribution is a 
relatively new challenge that should be well explored. The imbalanced 
learning problem is related to the model accuracy of learning problems 
in the presence of underrepresented data and class distribution skews 
(He and Garcia, 2009). In soil data classification (for either digital soil 
mapping or spectral classification), the model accuracy is usually 
dependent on the number of classes and the frequency distribution of 
soil observations, which are the results of the environmental complexity 
of soil forming factor that affect soil property spatially (McBratney et al., 
2003; Sharififar et al., 2019a; Sharififar et al., 2019b; Xie and Li, 2018). 
Thus, one critical issue that affects the model classification performance 
of soil contamination is the imbalanced number of samples among 
different classes. Several common machine learning (ML) algorithms 
consider balanced-based training dataset, whose all specific classes are 
broadly and equally represented. This pattern would result in a bias in 
predictions towards the majority classes with large sample size and the 
misclassification of or ignoring of the minority classes having a small 
number of samples (Chawla et al., 2002; Sharififar et al., 2019b). Many 
soil contamination datasets in real-world applications are imbalanced, 
especially for data containing local contamination hot spots. In the field 
of ML, this issue is called imbalanced class problem. Although imbal-
anced classification is recognized as a modeling problem in ML, this 
subject has not been well explored in soil spectral classification, 
particularly for diagnosing soil contamination (e.g., Cd). To address the 
issue of the imbalanced classification, the synthetic minority 
over-sampling technique (SMOTE) could be successfully used, however, 
it has not been utilized so far for Vis–NIR diagnose of soil Cd. 

Given the importance of assessing soil Cd contamination, the aim of 

Fig. 1. Review summarizing previous studies 
reporting soil Cd concentration (including minimum, 
mean, and maximum value) estimated by Vis–NIR 
spectra. R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, 
R12, R13, R14, R15, R16, and R17 refer to Wu et al. 
(2007), Song et al. (2012), Xie et al. (2012), Song 
et al. (2013), Gholizadeh et al. (2015), Chen et al. 
(2015), Rathod et al. (2016), St. Luce et al. (2017), 
Jiang et al. (2018), Stafford et al. (2018), Liu et al. 
(2018b), Cheng et al. (2019), Hou et al. (2019), 
Zhang et al. (2019b), Zhang et al. (2019a), Lamine 
et al. (2019), and this study, respectively. These ref-
erences are classified according to the type of sam-
pling site.   
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this study was to explore the best integrated modeling approach of 
Vis–NIR spectra to diagnose Cd in urban and suburban soils. The 
following objectives were thought: (1) analyze and understand the effect 
of soil Cd contamination on raw reflectance (RR) and continuum 
removal (CR) spectra; (2) compare the predictive potentials of three 
optimization strategies (i.e., full-spectrum, Boruta selection, and 
SMOTE) coupled with three ML classification algorithms (i.e., PLSDA, 
RF, and SVM) in diagnosing soil Cd contamination; and (3) determine 
the important wavelengths and spectral mechanism for soil Cd 
contamination diagnosis. 

2. Materials and methods 

2.1. Study area and sample collection 

The study area, covering about 8569.15 km2, is located in Wuhan 
City (the capital of Hubei province, China) (Fig. 2). This area is under a 
subtropical humid monsoon climate, and is characterized by four 
distinct seasons, with the average annual temperature and precipitation 
of 15.8–17.5 ◦C and 1150–1450 mm, respectively. Most of the rainfall 
occurs mainly from April to October. Rivers, lakes, and ponds are 
extensively scattered throughout the city, accounting for 26.1 % of the 
entire area. Soil parent materials are dominated by Quaternary clay, and 
river and lake sediments. 

The prevailing agricultural products in suburban area contain fruits 
(including watermelons, grapes, peaches, and strawberries), vegetables, 
oilseed rape, wheat, and soybeans. Due to the increasing demands for 
foods in urban areas, agricultural production in the suburban region is 
generally intensive. According to interviews with local farmers and 
other available information, fertilizers and pesticides are intensively 
used in agricultural practices to improve the yield and quality of agri-
cultural produces. In addition, there are some chemical industries, and 
iron and steel industries scattering in urban area. 

Depending on the specific land use type in urban and suburban areas, 
we adopt a random sampling scheme to collect 536 soil samples in 2012, 
2013, and 2014 (Fig. 2). The sampling sites covered a wide range of land 
uses, including cultivated land, transportation land, grassland, and 
garden land. The geographical coordinates of all sampling sites were 
recorded with a hand-held global positioning system. Each sample 
consisted of 5 sub-samples, collected at a depth of 0–20 cm using a 
wooden shovel. During sampling, it was necessary to remove weeds, 
roots, gravel and other materials. Samples were packed into zip-lock 
plastic bags to avoid cross-contamination of the samples, and later 
brought back to the laboratory. Soil samples were air-dried in the lab-
oratory, ground by an agate mortar, and then passed through 2 mm sieve 
before spectral measurement and laboratory chemical analysis to 
determine Cd and other key soil properties using methods detailed in the 
following section. 

2.2. Chemical analysis and contamination assessment 

To determine soil Cd and soil organic matter (SOM), iron (Fe), and 
pH, 536 soil samples were further ground and sieved through a 0.15 mm 
sieve. The following chemical analyses strictly followed the relevant 
standards of China’s Technical Specifications for Soil Environmental 
Monitoring (Agricultural Chemistry Committee of China, 1983; CNMEE, 
2018). For determining Cd concentration, the samples were first diges-
ted by HNO3 and HClO4, and then measured by an inductively coupled 
plasma mass spectrometry (Cheng et al., 2019). The SOM concentrations 
were measured by wet oxidation at 180 ◦C, following the potassium 
dichromate method (Cheng et al., 2019). The Fe contents were deter-
mined by a power X− ray fluorescence spectrometry (Cheng et al., 
2019). Soil pH values were measured by an electronic digital pH meter 
with a water-to-soil ratio of 2.5:1 (Bao, 2005). For quality assurance and 
quality control, reagent blanks, analytical duplicates, and standard 
reference materials were utilized during the experiments (Qu et al., 
2018). 

Using a risk screening value of 0.30 mg/kg in China as the threshold 
value, the measured soil Cd content was classified into two categories, 
and further coded into binary 0 or 1 to indicate each individual as un-
contaminated or contaminated sample, respectively (CNMEE, 2018). 

2.3. Spectral measurement and preprocessing 

All the ground and sieved samples had been placed in black petri 
dishes before they were scanned in a dark room to record the laboratory 
Vis–NIR spectral reflectance, using an ASD spectrometer that covers the 
spectral range from 350 to 2500 nm, with a final spectral output interval 
of 1 nm (Analytical Spectral Devices, Boulder, CO, USA). With a 45◦

light incident angle, a 50 W halogen lamp positioned 30 cm away from 
the soil sample was used as the illumination. The fiber optic sensor was 
mounted vertically 12 cm above the sample surface. The spectrometer 
was calibrated using a standard spectral panel that was repeated every 
10 samples. Each sample was recorded 10 times, and the collected 
spectra were then averaged in one representative spectrum. 

For spectral preprocessing, we only retained the spectral domain of 
400–2400 nm to discard the noisy bands. A second order Savitzky–Golay 
algorithm with a window size of 11 was used to smooth the spectral data 
(Savitzky and Golay, 1964). To minimize the spectral multicollinearity, 
we resampled the spectral data to an interval of 10 nm, thus resulting in 
201 wavebands in total. Spectral reflectance processed by the above 
steps was denoted as RR. The CR preprocessing was used to isolate the 
additional spectral peaks that are not easy to be observed from original 
spectra (Clark and Roush, 1984). Savitzky–Golay smoothing and CR 
processing were implemented in R with prospectr package (R Core Team, 
2017; Stevens and Ramirez–Lopez, 2014). 

Fig. 2. Location of sampling points within the study area in the urban and 
suburban of Wuhan city, Hubei Province, China. 
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2.4. Calibration and validation subsets 

We used conditioned Latin hypercube sampling to divide the entire 
dataset (N = 536) into calibration (67 % of the data, N = 360) and 
validation (33 % of the data, N = 176) parts (Minasny and McBratney, 
2006; Ramirez-Lopez et al., 2014). The calibration set aimed at identi-
fying the spectral pattern of different classes by fitting the classification 
models, whereas the validation set was utilized for the evaluation of 
model performance. 

2.5. Boruta feature selection 

Boruta selection algorithm was used to reduce the data redundancy 
for minimizing the model complexity and to identify the most suitable 
predictor subset for modeling (Kursa et al., 2010; Kursa and Rudnicki, 
2010; Prasad et al., 2019). Both RR and CR transformations were sub-
jected to Boruta selection, which was computed in R software with 
Boruta package (Kursa and Rudnicki, 2010). 

2.6. Synthetic minority over-sampling technique 

Since samples in the minority classes are easily misclassified when 
ML algorithms are directly used to handle dataset with skewed and 
imbalanced sample distribution, new soil classes are generated using the 
SMOTE algorithm to obtain balanced (e.g., equal number of samples per 
class) class observations (Chawla et al., 2002; Sharififar et al., 2019a; Xie 
and Li, 2018). The SMOTE technique runs oversampling interpolation 
by introducing synthetic examples in the spectral space, joining any or 
all of the k-nearest neighbors (Chawla et al., 2002). Data treatment was 
performed in R software with the DMwR package. The perc.over and perc. 
under values in the SMOTE algorithm were set to ensure that, after 
application of the SMOTE, the number of sample in the minority class 
should be same to that in the majority class. In our case, the values of 
perc.over and perc.under were defined as 200 and 150, respectively. 
According to Xie and Li (2018), the parameter k that controls how many 
of the nearest neighbor samples are used to generate new examples was 
set to 5. For the original calibration dataset, two different types of new 
SMOTE-processed calibration sets were generated for RR and CR spec-
tral transformations, respectively. 

2.7. Model establishment 

Three classification algorithms were considered (Table 1), encom-
passing three different types of approaches: (1) linear modeling (i.e., 
PLSDA); (2) tree-based modeling (i.e., RF); (3) kernel-based modeling (i. 
e., SVM). All these three methods were performed in R with caret 
package (Kuhn, 2008), which was cooperated with other packages also 
listed in Table 1. A brief introduction to each modeling approach is given 
below. For more detailed information, the reader is referred to the 
relevant literature provided. 

The first modeling method was PLSDA, which is a parametric algo-
rithm that can account for multivariate relationship between categorical 
response variable and spectral predictor (Wold et al., 2001). It converts 
high dimensional spectral data into some new latent variables, which 
are then used as new predictors for classification (Yu et al., 2018). The 

optimal number of components (i.e., ncomp parameter) was tuned with 
10 repeats of 10-fold cross-validation. 

The second modeling technique was RF, which is an integrated 
machine learning approach combining different predictions from mul-
tiple classification and regression trees in an average manner (Breiman, 
2001). This method is widely used in the fields of remote sensing and 
spectral analysis because of its good predictive ability for 
high-dimensional spectral data (Belgiu and Drăguţ, 2016; Nawar and 
Mouazen, 2019). Moreover, it can effectively overcome problems asso-
ciated with outliers, noisy samples, and model over-fitting. The output 
of RF technique can be interpreted by means of the variable importance, 
which provides a means for ranking the predictors influencing the 
response. The mean decrease in accuracy that is calculated from 
permuting out-of-bag data was specified as the measure type of variable 
importance. We used 10 repeats of 10-fold cross-validation method to 
tune the mtry parameter (i.e., number of randomly selected predictors) in 
the RF model. 

The third modeling technique was SVM, which belongs to a non- 
parametric data mining algorithm, very popular in data regression and 
classification (Vapnik, 1999). With regard to the categorical variables, it 
divides the entire dataset into multiple classes by establishing hyper-
planes in multidimensional feature space (Mountrakis et al., 2011). 
Following the principle of structural risk minimization, this algorithm is 
insensitive to over-fitting (Chen et al., 2019). The SVM modeling was 
carried out using C-classification and radial basis kernel “Gaussian” 
function. Within the framework of 10 repeats of 10-fold cross-validation, 
we used grid searching approach to optimize the parameters of sigma 
and C to achieve the optimal combination. 

These three algorithms were applied following three different types 
of optimization strategies (i.e., full-spectrum, Boruta selection, and 
SMOTE) subjected to RR and CR spectral transformations for soil Cd 
binary contamination diagnosis, yielding 18 predictive models in total. 

2.8. Accuracy assessment 

Three metrics, including overall accuracy (OA), Kappa, and Mat-
thews correlation coefficient (MCC), were used as evaluation indicators 
for assessing the predictive models (Boughorbel et al., 2017; Congalton, 
1991). The OA indicates the proportion of total correctly diagnosed 
samples in the dataset as uncontaminated or contaminated. Kappa co-
efficient is used to measure the difference between observed agreement 
and accidental expected agreement (Cohen, 1960). 

OA=
TP + TN

TP + TN + FN + FP
(1)  

Kappa= 1 −
1 − OA
1 − Pe

(2)  

where TP, TN, FP, and FN stand for the numbers of true positive, true 
negative, false positive, and false negative, respectively. Pe is the pro-
portion of units of chance agreement. 

The MCC is a balanced metric measuring the classification perfor-
mance in multi-class problems and unbalanced datasets (Matthews, 
1975). In the case of two-class classification, MCC can be written as: 

MCC=
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (3) 

For binary variables, MCC can be regarded as a discrete index of 
Pearson correlation. Following the suggestions by Xie and Li (2018), we 
interpreted the predictive model as: the absolute value of MCC within 
0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1 denote very weak, weak, 
moderate, strong, and very strong agreements, correspondingly. These 
three indicators were computed in R with rminer package (Paulo, 2013). 

Table 1 
Description of the three classification models considered in this study.  

Type Model Abbr. Parameter R package 

Linear Partial least squares 
discriminant analysis 

PLSDA ncomp caret, pls 

Tree- 
based 

Random forest RF mtry caret, 
randomForest 

Kernel- 
based 

Support vector machines 
with radial basis function 
kernel 

SVM C, sigma caret, kernlab  
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3. Results 

3.1. Descriptive statistics 

The summary statistics for laboratory measured soil Cd, SOM, Fe, 
and pH are displayed in Table 2. The Cd concentration of the entire 
dataset varied from 0.04 to 1.86 (mg/kg), with the coefficient of vari-
ation (CV) of 77.82 %. The CV values of SOM and Fe were 75.25 % and 
22.12 %, respectively. The pH ranged from 4.28 to 9.17, with a mean 
value of 7.24. Following the classification levels of CV reported from 
Wilding (1985), values of CV < 15 %, 15 % < CV < 35 %, and CV > 35 % 
correspond to low, moderate, and high data variability, respectively. 
Thus, the 536 samples used in the study were categorized as high vari-
ability, indicating the high soil Cd spatial variation within the study 
area. According to the risk screening limit for soil Cd, approximately 
33.96 % of soil samples in the entire dataset (i.e., 182 out of 536 sam-
ples) were contaminated (Table 2). These contaminated soil samples 
may be affected by anthropogenic activities and natural factors’ asso-
ciated changes in the landscape, e.g., erosion, flooding, and the like. 
Depending on the risk screening limit of soil Cd, 236 and 124 samples in 
the calibration dataset, and 118 and 58 samples in the validation data-
set, were identified as uncontaminated and contaminated samples, 
respectively (Table 2). 

To compare with the Cd concentration from other studies, we sum-
marized the literature using spectral technique to estimate soil Cd 
sourced from various types of sampling sites (Fig. 1). Overall, our study 
presented lower mean value of soil Cd concentration, as compared to 
most other studies. In addition, compared to the two articles using 
suburban soils for Cd estimation of Wu et al. (2007) and Cheng et al. 
(2019), the averaged Cd concentration in this paper was also lower. 
However, the maximum value in our dataset was 1.32 and 1.22 (mg/kg) 
higher than that from Wu et al. (2007) and Cheng et al. (2019), 
respectively. These results further reflect that there are local hot spots of 
Cd contamination source in the study area. 

3.2. Spectral reflectance characterization 

The mean spectra along with spectral standard deviations of 
contaminated and uncontaminated samples were plotted for RR and CR 
spectra in Fig. 3a and b, respectively. The RR spectra of the contami-
nated and uncontaminated samples presented similar spectral trends 
and shapes, but different absorption depths and reflectance intensity. 
The contaminated samples tended to have lower reflectance magnitude 
than the uncontaminated samples. This may be caused by the darker hue 
of the contaminated sample, resulting in higher absorption and lower 
reflection of the emitted light, and thus lower reflectance intensities 
observed (Horta et al., 2015; Nawar et al., 2019; Shi et al., 2014). 
However, it is not easy to visualize the contamination degree using the 
RR spectra. The preprocessed spectra after CR transformation exhibited 
pronounced absorption valleys around 450, 1430, and 1940 nm. Be-
sides, the contaminated and uncontaminated samples could be visually 

distinguished at wavelengths approximately within 440–540, 
1380–1550, and 1910–1990 nm. The CR preprocessing highlights the 
differences between contaminated and uncontaminated samples in 
different spectral regions and effectively constructs a new feature space. 

We also plotted the mean raw spectral curves of SOM and Fe at 
different content classes (Fig. 3). Overall, spectral curves of these two 
soil properties followed a similar pattern: the reflectance decreased with 
increasing concentration. This trend may be attributable to the 
increasing light absorptions of the blue color associated with increasing 
SOM, and the red color associated with Fe oxides, resulting in a decrease 
in the intensity of the spectral curves (Nocita et al., 2014; Stenberg et al., 
2010; Viscarra Rossel et al., 2016). 

3.3. Spectral mechanism of soil Cd diagnoses 

The correlation coefficients among the four analyzed soil properties 
in the calibration dataset (Fig. S1) demonstrated that Cd was substan-
tially and positively correlated with SOM and pH, with correlation 
values of 0.52 (P < 0.001) and 0.33 (P < 0.001), respectively. There was 
a positive correlation between pH and Fe (r = 0.19, P < 0.001). In 
addition, we also analyzed the RR spectral correlations with soil Cd and 
the other three soil properties (Fig. S2). Among SOM, Fe, and pH, the 
correlation pattern of soil Cd to reflectance spectra was quite similar to 
that of SOM and pH, which corroborates the correlation analysis in 
Fig. S1. Since soil pH has no direct spectral response, the potential 
mechanism to explain the spectral correlation of soil Cd should be 
assigned to its surrogated correlation with SOM, through which an ac-
curate spectral diagnosis model for soil Cd element can be developed. 

3.4. Boruta selection and SMOTE 

The results regarding Boruta selection carried out using RR and CR 
spectra are shown in Fig. 4a and b, respectively. A total of 21 wavebands 
were selected from RR spectra as significant variables, and were pri-
marily located within 570–660, 1150–1160, 1940–1950, and 
2220–2230 nm spectral bands. For the CR spectra, a total of 32 spectral 
predictors were selected mainly around 430–560, 1370–1460, 1910, 
1950–1970, 2180–2220, and 2270–2320 nm spectral ranges. The 
wavelength distribution of the selected subsets for CR spectra in Fig. 4b 
compares well with that of the absorption features of CR spectra in 
Fig. 3b. 

Following the working procedure of SMOTE algorithm defined in 
Section 2.6, with respect to RR spectra in the calibration set, two groups 
of resampled but balanced datasets, both with 372 samples, were 
generated for uncontaminated and contaminated samples, respectively. 
Likewise, two sets of balanced datasets with equal sample size (i.e., both 
with 372 samples) were also achieved for CR spectra. 

3.5. Multivariate modeling 

We numbered each diagnosis model to better distinguish them 

Table 2 
Summary statistics of soil Cd, soil organic matter (SOM), iron (Fe), and pH.  

Variable Sample set Na Min Max Mean Median CV ( %)b Background valuec Thresholdd Contamination ratio ( %)e 

Cd (mg/kg) Entire 536 0.04 1.86 0.29 0.23 77.82 0.17 0.30 33.96 
Calibration 360 0.04 1.63 0.29 0.23 74.83 0.17 0.30 34.44 
Validation 176 0.05 1.86 0.29 0.23 83.77 0.17 0.30 32.95 

SOM ( %) Entire 536 0.10 16.12 2.24 1.92 75.25    
Fe ( %) Entire 536 1.04 9.38 5.69 5.58 22.12    
pH Entire 536 4.28 9.17 7.24 7.64 15.41     

a Sample number. 
b Coefficient of variation. 
c Soil Cd background value in Hubei province (Cheng et al., 2019). 
d Risk screening value for soil Cd in China (CNMEE, 2018). 
e Percentage of contaminated samples (the risk screening value is set as threshold). 
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Fig. 3. Calibration dataset: mean RR (a) and CR processed (b) spectra of uncontaminated and contaminated soils, and mean reflectance spectra (c and d) grouped by 
different SOM and Fe classes that are uniformly divided based on the concentration of all samples from small to large. The colored regions in the first two subplots 
indicate the corresponding spectral standard deviations. 

Fig. 4. Informative wavelengths selected by Boruta approach for RR (a) and CR (b) spectra in the calibration dataset (N = 360).  
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(Table 3). Overall, the classification performance for soil Cd depended 
on the optimization strategy, spectral preprocessing, and modeling al-
gorithm applied (Table 3 and Fig. 5). For full-spectrum analysis, model 
generated using CR spectra combined with SVM algorithm provided the 
highest validation classification performance (i.e., classified as strong 
agreement), with OA, Kappa, and MCC being of 0.82, 0.57, and 0.65, 
respectively. Concerning the selection of significant wavebands using 
the Boruta algorithm, the optimal model was developed via CR spectra 
with RF approach, presenting the highest validation MCC value of 0.74 
(i.e., classified as strong agreement). In comparison with the full- 
spectrum and the Boruta wavelength selection techniques, SMOTE 
resulted in consistent increase in the classification performance of the 
validation set, irrespective of the spectral transformation and modeling 
algorithm used. This improved classification accuracy highlight SMOTE 

as the most successful modeling strategy for stable enhancement of the 
spectral classification features related to soil Cd. Amongst all the models 
investigated, the combination of SMOTE, CR spectra with RF modeling 
algorithm (i.e., Model 17) resulted in the highest validation results in 
terms of OA, Kappa, and MCC values of 0.88, 0.74, and 0.77, respec-
tively, a diagnosis that was classified as strong agreement. Although 
better classification performance is obtained by SMOTE over Boruta 
selection method in diagnosing soil Cd contamination (Table 3), the 
improvement in validation classification performance of Models 13–18 
relative to Models 7–12 is limited. For instance, in terms of the best 
diagnosis models in Boruta selection and SMOTE strategies, the MCC 
value of Model 17 was only 0.03 higher than that of Model 11. 

Table 3 
Classification performance for soil Cd diagnosis using Vis–NIR spectra subjected to different optimization strategies, spectral transformations, and modeling 
algorithms.  

Optimization strategy Spectral transformationb Modeling algorithm Modelc Validation 

OAd Kappa MCCe 

Full-spectrum RR PLSDA Model 1 0.75 0.43 0.58 
RF Model 2 0.77 0.48 0.60 
SVM Model 3 0.77 0.46 0.58 

CR PLSDA Model 4 0.77 0.46 0.58 
RF Model 5 0.80 0.54 0.63 
SVM Model 6 0.82 0.57 0.65 

Boruta RR PLSDA Model 7 0.82 0.59 0.66 
RF Model 8 0.84 0.63 0.69 
SVM Model 9 0.83 0.62 0.69 

CR PLSDA Model 10 0.85 0.65 0.70 
RF Model 11 0.87 0.71 0.74 
SVM Model 12 0.85 0.66 0.71 

SMOTEa RR PLSDA Model 13 0.84 0.64 0.69 
RF Model 14 0.85 0.68 0.72 
SVM Model 15 0.86 0.66 0.71 

CR PLSDA Model 16 0.85 0.67 0.72 
RF Model 17 0.88 0.74 0.77 
SVM Model 18 0.88 0.72 0.76  

a Synthetic minority over-sampling technique. 
b RR: raw reflectance; CR: continuum removal. 
c Models are numbered depending on the optimization strategy, spectral transformation, and modeling algorithm used. 
d Overall accuracy. 
e Matthews correlation coefficient. 

Fig. 5. Confusion matrix for soil Cd diagnosis for 18 different Vis–NIR classification models (shown for the validation dataset). Number of samples for each class is 
identified below the corresponding circle. 
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3.6. Important wavelengths for soil Cd diagnosis 

Since Model 17 achieved the best classification accuracy among all 
18 models explored, we used this model to interpret the important 
spectral bands related to soil Cd (Fig. S3). In addition, to compare the 
performance of the Model 17 with the corresponding full-spectrum 
model, the important wavelengths of Model 5 are also shown in 
Fig. S3. Both Models 5 and 17 showed overall similar variable impor-
tance trends across the entire spectral region, with large importance 
values occurring primarily within 410–610, 850–890, 1200–1220, 
1350–1440, and 2150–2230 nm spectral bands, which are well in line 
with the wavelength positions of the Boruta selected variables on CR 
spectra (also shown in Fig. S3 and Fig. 4b). 

4. Discussion 

Although the mean value of soil Cd concentration in the entire 
dataset (i.e., 536 samples) was lower than that of most studies in Figs. 1 
and 33.96 % of the samples were identified as contaminated with 
varying degrees of Cd concentrations. Elevated Cd content within the 
study area may be related to the rapid urbanization and industrialization 
of Wuhan City, and long-term agricultural cultivation nearby urban-
–rural transition zones. Commonly, the contamination sources of soil Cd 
mainly include: petrochemicals, galvanization, agricultural fertilizers, 
lubricating oil and tires, and coal combustion (Liu et al., 2018a). Wuhan 
City has a large population with well-developed road networks (Zhang 
et al., 2018), causing wearing of tires, as well as increased use of 
lubricating oil and brakes. Additionally, there were some petrochemical, 
steel production, galvanization manufacturing, and other industrial 
enterprises scattered in different locations of the city (Wu et al., 2020). 
These plants produce Cd emissions during the production process and 
consequently contaminate the surrounding soils through atmospheric 
deposition. In agricultural practices, due to the shortage of labor re-
sources, the farmers in the suburban areas around Wuhan City tend to 
increase the phosphate fertilizer application in order to increase the crop 
production. When soil phosphorus fertilizer is low, increase of the 
phosphorus fertilizer input to improve soil effective phosphorus level is 
necessary; but when soil reaches phosphorus rich-level, further increase 
in effective phosphorus would aggravate the threat of the loss of soil 
phosphorus in the farmland. Excessive usage of phosphate fertilizer may 
lead to an increase in soil Cd concentration, because Cd is the inherent 
impurity in phosphate rock (Lv and Wang, 2019). Therefore, it is 
necessary to establish a rapid and efficient approach to diagnose the soil 
Cd contamination, especially for some areas that pose risks to the public 
health. 

Although soil Cd is spectrally featureless with no direct spectral 
response in the Vis–NIR spectral region, its relation (if exist) to other 
spectrally active soil properties would support the successful estimation 
(Gholizadeh et al., 2018; Horta et al., 2015; Nawar et al., 2019; Shi et al., 
2014; Stenberg et al., 2010). From Fig. S1, SOM was positively and more 
strongly correlated with soil Cd than Fe, suggesting that SOM is the 
major property to explain the mechanism of predicting soil Cd from the 
Vis–NIR reflectance spectra, as SOM has direct spectral responses in 
Vis–NIR spectroscopy. Furthermore, as soil becomes darker in color with 
increasing SOM, this corresponds to the significant bands for Cd in the 
visible range (Fig. 4). This result can be explained by the fact that 
different interaction forms of the metal complex and the decomposition 
of SOM result in the binding of soil Cd with SOM (Chen et al., 2020; 
Piccolo and Stevenson, 1982; Shi et al., 2014). However, this type of 
spectral estimation mechanism may vary depending on the study site. 
The finding in our case is comparatively consistent with those reported 
by Chen et al. (2015), Pandit et al. (2010), Song et al. (2012), and St. 
Luce et al. (2017), but not with Wu et al. (2007), who noticed the cor-
relation with Fe is the major mechanism for explaining the successful 
estimation of soil Cd by the Vis–NIR reflectance spectra. These differ-
ences in prediction mechanism may be caused by diverse soil formation 

environments, such as terrain, soil parent materials, and anthropogenic 
management practices. 

Selecting the most appropriate subset of spectral bands to diagnose 
the soil Cd contamination is a vital factor that influences the model 
classification performance (Table 3). The use of the Boruta algorithm for 
waveband variable selection reduced the number of spectral predictors 
from 201 to 21 and 32 for RR and CR spectra, respectively (Fig. 4). 
Besides, all the six resulted models (i.e., Models 7–12) have improved 
the validation accuracy (all were classified as strong diagnosis agree-
ment), in comparison with their corresponding full-spectrum predictive 
models (i.e., Models 1–6), irrespective of spectral transformation and 
modeling algorithm. The relatively poor classification results developed 
based on the full-spectrum input may be because of its waveband pre-
dictors containing irrelevant and noisy information, which leads to poor 
results, although the high-resolution spectral data can fully reflect well- 
defined narrow spectral features (Castaldi et al., 2016; Raj et al., 2018; 
Vohland et al., 2014; Yang et al., 2012). The elaborated feature selection 
procedure followed in this study has not only resulted in improved 
prediction for Cd, but also produces parsimonious model structure for 
practical applications. Overall, the majority of selected variables by the 
Boruta selection algorithm on CR spectra in Fig. 4b approximately match 
the locations of possible absorption features of key soil attributes having 
direct spectral responses at 430–560 (related to goethite, ferric oxide, 
hematite, ferrihydrite, and organic matter), 1370–1460 (associated with 
OH stretch, kaolin doublet, and C––O), 1950–1970 (attributed to OH in 
the first overtone and C–OH and smectite), 2180–2220 (corresponded to 
SOM, illite, kaolinite, and Al–OH bend plus O–H stretch), and 
2270–2320 nm (linked to Fe–OH, Mg–OH, C–H stretch fundamentals, 
and humic acid) (Coblinski et al., 2020; Knadel et al., 2013; Viscarra 
Rossel and Behrens, 2010). Moreover, the locations of these significant 
wavebands were comparable with those of relatively large importance 
value resulted from Models 5 and 17, identified in Fig. S3, confirming 
the efficiency of the Boruta selection approach. Indeed, direct diag-
nosing of whether samples are contaminated or not through reflectance 
spectra, mainly depends on how well a soil pollutant is correlated to the 
spectrally active soil properties like SOM and absorption features of 
molecules (Bray et al., 2009; Shi et al., 2017; Wang et al., 2014). The 
substantial correlation of soil Cd with SOM and to a less extent with Fe, 
and good match between Boruta selected variables from CR spectra and 
absorption features mentioned-above explain the good classification 
accuracy for soil Cd contamination diagnosis (Table 3). 

A limitation to cause deterioration in data classification accuracy is 
the highly imbalanced dataset among different classes, under which 
statistical classifiers are often overpowered by the majority class (having 
the largest number of samples) and overlook the minority class (Chawla 
et al., 2002; Xie and Li, 2018). According to Table 2, the uncontaminated 
and contaminated samples accounted for 66.56 % and 34.44 % of the 
total observations in the calibration dataset, respectively. By using 
SMOTE algorithm to create balanced datasets, the validation classifi-
cation accuracies in all cases (i.e., Models 13–18) were improved in 
comparison to full-spectrum analysis (Table 3), regardless of spectral 
transformation and modeling algorithm used. Previous researches have 
shown that the classification accuracy has been improved using resam-
pling techniques in other research areas of soil studies. For instance, 
Sharififar et al. (2019a), Sharififar et al. (2019b), and Xie and Li (2018) 
all used oversampling technique to improve the classification perfor-
mance for prediction or mapping of soil type classes. 

With regard to the spectral transformation, the prediction models 
built with the CR spectra slightly outperformed those of the RR spectra 
(Table 3). The improvement of classification accuracy after CR pre-
processing indicated CR to be as effective technique in highlighting key 
absorption features and minor peaks (difficult to detect in the RR) 
beneficial for soil Cd diagnose, as demonstrated in Fig. 3b (Clark and 
Roush, 1984). This method has also been successfully applied in other 
published studies to predict soil properties with competitive results 
(Lagacherie et al., 2008; Nawar et al., 2016; Vašát et al., 2014). As 
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shown in Table 3, the validation accuracy of PLSDA, RF, and SVM 
depended upon both the optimization method and spectral trans-
formations adopted. In summary, the RF and SVM methods provided 
similar predictive ability in diagnosing soil Cd contamination, and both 
algorithms outperformed PLSDA. The outperformance might be attrib-
uted to the nonlinear relationship that might exist between soil Cd 
concentration and spectral data (Hong et al., 2019; Shi et al., 2017). 
Once advanced machine-learning methods, such as RF and SVM, are 
utilized, improved classification accuracy is expected as these algo-
rithms can effectively deal with the complex and non-linear spectral 
behaviors (Dotto et al., 2018; Nawar and Mouazen, 2019; Ng et al., 
2020). 

Due to the complexity of soils, diversity of soil formation, and spatial 
heterogeneity, a single sensor to estimate or classify soil attributes is 
reported to underperform the sensor fusion approach (Horta et al., 2015; 
Wan et al., 2020; Xu et al., 2019). This necessitates innovative solutions 
to integrate and fuse multi-sensors or integrate modeling approaches 
(multi-models) to maximize accurate estimation of multiple soil prop-
erties. With the continuous advancements in proximal soil sensing 
technologies, a multiple-sensors data fusion approach is strongly 
advancing in soil analysis including soil contamination. Sensor fusion 
include the combinations of Vis–NIR, X-ray fluorescence, mid-infrared, 
and laser-induced breakdown spectroscopy, which have been success-
fully adopted with advanced modeling approach to estimate various soil 
properties (Gholizadeh et al., 2018; Horta et al., 2015; Nawar et al., 
2019; Shi et al., 2014). More researches for assessing soil Cd are required 
by considering the joint use of multiple sensors in combination with 
advanced modeling approaches similar to the one adopted in the current 
work. Although the combined use of multiple sensors may decrease the 
measurement speed and increase the instrument costs, the improved 
model accuracy is worth expecting. 

5. Conclusions 

This study developed a framework based on Vis–NIR spectroscopy to 
explore the potentials of three different optimization strategies (i.e., full- 
spectrum, Boruta selection, and SMOTE) for diagnosing soil Cd 
contamination in urban and suburban soils, using three different clas-
sification methods, including PLSDA, SVM, and RF. Based on the results 
obtained, the following conclusions were made:  

(1) Soils contaminated by Cd showed lower reflectance spectral 
magnitude, compared with uncontaminated soils. Spectra pre-
processing by CR has highlighted significant spectral features 
related to soil Cd, useful for correct spectral classification into 
contaminated or uncontaminated samples.  

(2) Both Boruta and SMOTE methods improved the classification 
accuracy for soil Cd, and the best accurate diagnosis was achieved 
by the combination of SMOTE applied on CR spectra with RF 
modeling (Kappa in the validation set = 0.74).  

(3) The predictor wavebands for diagnosing soil Cd contamination 
were at 410–610, 850–890, 1200–1220, 1350–1440, and 
2150–2230 nm, most of which are associated with well-defined 
soil absorption features. 

(4) The correlations of soil Cd with the spectrally active soil attri-
butes (i.e., SOM in particular and Fe to a less extent) were 
important for assessing the contamination of the spectrally 
featureless Cd element. 

This study provides a direct solution for the use of the Vis–NIR 
spectroscopy to diagnose soil Cd contamination in urban and suburban 
soils. 
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