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Evaluation of the Impacts of Rain Gauge Density
and Distribution on Gauge-Satellite Merged

Precipitation Estimates
Yuanyuan Chen, Jingfeng Huang , Xiaodong Song , Huayang Wen, and Haiyu Song

Abstract— The capacity of combined gauge-satellite precipi-
tation estimates largely depends on the characteristics of the
input data such as the number, location and reliability of rain
gauges, and satellite-derived precipitation quality. The objective
of this study is to examine the influence of rain gauge network
configuration including density and spatial distribution on the
performance of the gauge-satellite merging estimation at monthly
and ten-day temporal scales. Dense rain gauge observations and
satellite-derived precipitation data (i.e., TMPA 3B42 Version
7 and Version 06 IMERG Final Run) in two provinces of
China are used. A two-stage downscaling-integration approach
is applied in the gauge-satellite precipitation estimation. Various
scenarios of rain gauge density and combination are designed
and their corresponding merged precipitation estimates are
evaluated using statistical indices. The merged results using
the TMPA and IMERG precipitation product, respectively, are
compared. The results show that: 1) the influence of rain gauge
network configuration on the gauge-satellite merged precipitation
estimates gradually decreases with the increase in rain gauge
density, and the gauge-satellite merged precipitation estimates are
more sensitive to the rain gauge network density in wet season
and ten-day temporal scale than in dry season and monthly
scale, respectively and 2) the merged precipitation estimation
using the IMERG precipitation data generally outperforms the
estimation using TMPA precipitation data in the low gauge
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density scenarios, and the gap decreases with the increase in the
rain gauge network density. In the areas with sparse rain gauges,
improving the quality of satellite precipitation data would signif-
icantly improve the performance of the gauge-satellite merging
estimation.

Index Terms— Downscaling-integration, gauge-satellite merged
precipitation estimates, precipitation, rain gauge density, rain
gauge spatial distribution.

I. INTRODUCTION

PRECIPITATION is a key element in the global water
cycle. Acquiring accurate precipitation data sets with high

spatiotemporal resolutions is crucial for water management,
hydrological modeling, and predictions and is still a chal-
lenging task [1]. Conventional in-situ measurements from rain
gauges could provide accurate precipitation information at rain
gauge locations but lack spatial representation due to large
spatial heterogeneity and relatively sparse distribution partic-
ularly in mountainous areas [2]. The satellite-derived precipi-
tation products, for example, GPCP, PERSIANN, TMPA, and
GSMaP, are attractive alternatives to detect spatial patterns
of precipitation and have been widely applied in various
applications [3]–[8]. However, the satellite-derived precipita-
tion products usually contain large random and systematic
errors affected by factors such as retrieval algorithms and
topographic features [9]–[13]. Therefore, effectively com-
bining multi-source precipitation data and developing high-
quality, high-resolution precipitation products are necessary
for hydrometeorological services and scientific research.

Since 1990s, great efforts have been made to inte-
grate multisource precipitation data, and a series of global
precipitation products have been developed. For example,
the Global Precipitation Climatology Project (GPCP) and the
Climate Precipitation Center (CPC) provide global precipi-
tation analyses combining multiple satellite-based data with
rain gauge analyses, including numerical model outputs [4],
[13]–[15]. The widely used TMPA 3B43 product (Version 7)
over 50◦S–50◦N has also been adjusted by monthly rain-gauge
analysis of the Global Precipitation Climatology Cen-
tre (GPCC) [5]. These merged analyses have been widely used
in meteorological monitoring, climate change analysis, and
hydrological studies [16]–[19]. However, the improvements of
the performance of these products are limited by restricted
accessibility to rain gauge data [20], [21]. Although higher
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resolution products such as GSMap-MVK, CMORPH
Blended, and IMERG Final Run have been developed, the spa-
tial resolution of these merged analyses still cannot meet the
needs of hydrological and meteorological applications at local
or regional scales [22], [23].

Over the past decades, numerous merging schemes, for
example, objective analysis [24], [25], optimal interpolation
techniques [26], [27], conditional merging [28], double ker-
nel smoothing [29], inverse-root-mean-square-error weight-
ing approach [30], geographical analysis [31]–[35], Bayesian
merging and Kalman filtering [36]–[39], and multiscale analy-
sis [40], [41], have been developed to merge multisource
precipitation data. Among them, geographical-based merging
schemes are one of the mainstream methods of merging mul-
tisource precipitation data because of their unique advantages
in spatial statistical analysis and estimation and in spatial
uncertainty estimation. Though combining satellite-derived
precipitation with rain gauge observations can effectively
improve the accuracy of precipitation estimates, there still
exist obvious uncertainties rooted in merging algorithms them-
selves, input sources, the scale mismatch of different sup-
ports, and the spatial and temporal variability of precipita-
tion [23], [29], [31], [42]. Verdin et al. [31], [37] pointed
out that the Gaussian assumption of the Bayesian kriging
approach could generate negative precipitation estimates in
very dry areas and would be invalid at fine temporal scales,
and the local polynomial scheme was much more sensitive
to extrapolation and edge effects than the kriging model.
Li and Shao [29] observed that directly merging rain gauge
observations and coarse resolution satellite data could produce
significant boundary biases in higher resolutions. The results
of our previous work showed that the gauge-satellite merged
precipitation estimates could be improved by downscaling
the coarse resolution TMPA precipitation data to fine spa-
tial resolution, and the accuracy significantly and positively
correlated with the accuracy of satellite-derived precipitation
while it negatively correlated with the spatial heterogeneity of
precipitation [23].

The rain gauge observations are important input sources
both in gauge-based precipitation estimates and gauge-
satellite/radar precipitation merging estimates. The network
density and spatial distribution of rain gauges have great
influences on the precipitation estimation [43], [44]. Many
studies have analyzed the effects of the rain gauge networks
on the gauge-based areal precipitation estimates and lumped
hydrological simulations [48]–[52]. Sthilaire et al. [45] evalu-
ated the performances of the total annual precipitation estima-
tions and the runoff simulations of the HSAMI hydrological
model with sparse and dense gauge networks, respectively.
They observed that the total annual precipitation estimates
and the runoff simulations could be improved with a denser
gauge network. Xu et al. [46] found that the errors of the
gauge-based areal rainfall and simulated runoff increased as
the rain gauge number decreased. Lopez et al. [47] showed that
the performance of the gauge-based precipitation estimation
improved as the number of rain gauges increased and grad-
ually leveled off. Recently, a few studies have quantitatively
evaluated the influence of the rain gauge network density on

precipitation estimates by merging multiplatform information.
For example, Berndt et al. [44] found that kriging with external
drift had similar performance with the conditional merging
in low rain-gauge density scenarios. Baik et al. [32] applied
three different merging schemes to improve the gauge-satellite
merged precipitation estimation at five rain gauge densities and
various accumulation times. They showed that the accuracy of
the merged results increased with the increase in the accumu-
lation time and network density, and a similar work could be
found by Park et al. [42]. In these studies, few rain gauge
network density scenarios were designed, and the analyses
of the influence of rain gauge location on the precipitation
estimation are deficient. To better understand the influence of
the spatial configuration of rain gauge on the gauge-satellite
merged precipitation estimates, more scenarios of rain gauge
density and combination need to be designed, and the sensitiv-
ity of precipitation merging estimates to rain gauge locations
also needs to be investigated. Furthermore, the influence of the
satellite-derived precipitation data with different qualities on
the gauge-satellite merged precipitation estimates in different
rain gauge density scenarios also needs to be explored. These
issues would be critical for the improvement of precipitation
spatial estimation and the optimization of rain gauge network.

The automatic weather observing network system of China
has been established and gradually improved since 2006. There
are nearly 40 000 national and regional automatic weather
stations (AWSs) in 2015, and the observation network density
has increased greatly especially in the eastern regions. This
highly dense weather observing network provides superior data
support for investigating the impacts of rain gauge configura-
tion on multiplatform precipitation estimates. In this study, two
provinces, Anhui and Hubei, in the middle and lower reaches
of the Yangtze River of China with a high gauge network
density are selected as the study area. The objectives of this
study are to: 1) examine the influence of rain gauge density and
spatial distribution on the gauge-satellite merged precipitation
analysis at monthly and ten-day temporal scales, respectively
and 2) analyze the influence of the satellite-derived pre-
cipitation data with different qualities on the gauge-satellite
merged precipitation estimates in different rain gauge density
scenarios. The remainder of this article is organized as follows.
Section II describes the study area and the data sets; Section III
is about the gauge-satellite precipitation merging scheme; the
designs of rain gauge configuration and the rain gauge network
optimization scheme are described; Section IV describes the
results; the discussions and some possible future research
proposals are given in Section V; and conclusion is drawn
in Section VI.

II. STUDY AREA AND DATA

A. Study Area

The study area, Anhui and Hubei provinces of China,
is between 29◦01�–34◦38�N and 108◦21�–119◦37�E and has
an area of about 326 000 km2 (Fig. 1). It lies in the
south–north climate transition zone in China, with a subhumid
warm temperate monsoon climate in the north of Huaihe River
and a subtropical humid monsoon climate in the south of
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Fig. 1. Location and topography of the study area.

Huaihe River. The annual average precipitation varies between
700 and 1670 mm from north to south and concentrated
mainly in the spring and summer. The abundant summer pre-
cipitation accounts for 40%–60% of the annual precipitation,
while the winter precipitation accounts only for 4%–15%.
The topography of this study area includes plains, hills, and
mountains. The elevation ranges between 92 m below sea level
and 3105 m above sea level: the high altitudes are mainly
distributed in the western area of Hubei Province and the
western and southern areas of Anhui Province.

B. Data

We use both the ground and satellite-based precipitation
data in the precipitation merged estimation. Daily rain gauge
data from 2204 AWSs with quality-control procedures over
Anhui Province and Hubei Province ranging from 2010 to
2015 were used. The quality-control procedures include cli-
matological and regional extreme value checks, temporal and
spatial consistency check, and verification against mosaic radar
reflectivity observations. The few missing daily records of
some stations have been estimated using the surrounding
observations and ordinary kriging. Each station covers about
148 km2 on average (Fig. 1). Among them, 220 roughly evenly
distributed rain gauges (about 10%, red points) are selected as
validation stations using k-means clustering, and the remaining
1984 rain gauges (about 90%, unfilled points) are used for
merging. The rain gauges in the western mountainous area of
Anhui Province are sparser than the other areas. The ten-day
and monthly rain gauge precipitation data were aggregated
from daily AWSs data sets, respectively. For ten-day temporal
scale, each month is divided into three periods, that is, Day

1–Day 10, Day 11–Day 20, and Day 21 to the last day of
this month. The analysis is also conducted at the ten-day
temporal scale because many crop drought and flood disasters
are monitored at this scale in China.

The satellite-derived precipitation data used were generated
from the Tropical Rainfall Measuring Mission (TRMM) [48]
and the Global Precipitation Measurement (GPM) mis-
sion [49]. The TRMM was jointly conducted by the National
Aeronautics and Space Administration (NASA) and the
Japanese Aerospace Exploration Agency (JAXA) in 1997.
The latest Version-7 daily TRMM Multisatellite Precipi-
tation Analysis (TMPA) 3B42 product, which covers the
global areas between 50◦S and 50◦N at 0.25◦ spatial res-
olution, is applied in this article. The recent 3B42 algo-
rithm combines a number of satellite sensors and GPCC
monthly rain-gauge analysis to produce the best precipi-
tation estimates [5]. The Version 7 daily 3B42 precipi-
tation data used in our study, covering 2010–2015, were
obtained from the NASA archive (https://pmm.nasa.gov/data-
access/downloads/trmm) and aggregated to ten-day and
monthly values, respectively. The GPM, initiated by NASA
and JAXA as a global successor to TRMM, is an interna-
tional network of satellites. Its Core Observatory carrying
the first space-borne Ku-/Ka-band Dual-frequency Precipi-
tation Radar (DPR) and a multichannel GPM Microwave
Imager (GMI) was launched on February 27, 2014. The
Integrated Multi-satellitE Retrievals for GPM (IMERG) is
designed to estimate precipitation from all passive-microwave
instruments, infrared-based observations, and GPCC gauge
rain-gauge analysis [49]. The Version 06 IMERG Final Run
daily data sets with 0.1◦ spatial resolution from 2010 to
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2015 are used in this study. Now, the extension of IMERG
back to the TRMM era has been finished, and the complete
record from June 2000 to present can be downloaded from
the website https://gpm.nasa.gov/data-access/downloads/gpm.
The TMPA 3B42 V7 is now decommissioned and has been
replaced by the IMERG product which generates precipitation
at finer scale than 3B42 and is more performant [50].

Considering the influence of the topographical factors on
precipitation, a 90-m Digital Elevation Model (DEM) data
from the Shuttle Radar Topography Mission (SRTM) are
also used in this study. The SRTM 90 m DEM data were
downloaded from the website (https://srtm.csi.cgiar.org/) and
resampled to 1 km using pixel averaging.

III. METHODOLOGY

A. Downscaling-Integration Framework for Monthly and
Ten-Day Precipitation Estimates

A two-stage downscaling-integration approach proposed by
Chen et al. [23] is used to combine the satellite-derived
precipitation data and rain gauge measurements to produce
monthly and ten-day precipitation data sets at high spa-
tial resolution (1 km × 1 km). The approach has been
proven to be an efficient alternative to combine different
data to produce improved high-resolution precipitation esti-
mates. Downscaling the high-resolution satellite precipitation
before merging with ground observations can improve the
merging performance [29]. In the downscaling-integration
framework, the first step is to downscale the low-resolution
satellite-derived precipitation to 1-km spatial resolution using
area-to-point kriging (ATPK) for better matching ground
observations. Then, the downscaled satellite precipitation data
are merged with the rain gauge observations by applying the
geographically weighted regression kriging (GWRK). Addi-
tional geographical factors (i.e., longitude, latitude, and eleva-
tion) are also involved in the merging model.

1) ATPK for Downscaling Satellite-Derived Precipitation
Data: The ATPK is a geostatistical-based downscaling
scheme that calculates the point values from areal informa-
tion [51]–[53]. The principle of ATPK is similar to that of the
ordinary kriging, that is, the target point value is the linear
weighted sum of the neighboring areal data. The difference
between them lies in the calculation of variances. The ordinary
kriging uses the point-to-point covariances in the kriging
system, while the ATPK uses the block-to-point and block-to-
block covariances. Assuming an areal pixel value is the aver-
age values of all discretized point values within it, the block-
to-point and block-to-block covariances can be expressed
as regularized functions of point-to-point covariance. Under
the assumption of second-order stationarity, the point-support
covariance can be replaced by the point-support semivar-
iogram, which is estimated by an iterative deconvolution
procedure using the area-support data in the ATPK [54]. More
details of the ATPK estimating equations, kriging system, and
its calculating process can be found in [51] and [23].

The ATPK takes into account the sizes of the area-support
data and their spatial correlations and also gives the accu-
racy estimation of downscaling. Kyriakidis [51] proved an

important property of ATPK, that is, the consistency property:
the average of ATPK estimates within an area-support is equal
to the original value of this area-support. This property enables
ATPK to effectively preserve the important information in
the original areal data [55]. An original satellite-based pixel
value records the areal precipitation of this pixel. Because the
target spatial resolution (1 km) of this study is much less than
the original spatial resolution, the fine spatial resolution pixel
value can be treated as the point value in the ATPK model.
The downscaled satellite precipitation data using ATPK would
be used as inputs in the next GWRK model.

2) Gauge-Satellite Merged Precipitation Estimates Using
GWRK: The GWRK is a combination of GWRK and ordinary
kriging. GWR is a spatial local regression algorithm that
effectively considers the nonstationarity relationship between
variables [56], [57]. Based on GWR, the variable y (e.g.,
precipitation) at spatial point i can be expressed as

yi = β0(μi , vi ) +
p∑

k=1

βk(μi , vi )xik + εi (1)

where (μi , vi ) is the longitude and latitude coordinate of
the i th spatial point; xik and εi are the value of the kth
auxiliary variable and the regression residual at spatial point i ,
respectively; βk(μi , vi ) is the regression coefficient of the kth
auxiliary variable at spatial point i , which is calculated using
weighted least squares estimation

β̂(μi , vi ) = (
XTW (μi , vi )X

)−1(
XTW (μi , vi )Y

)
(2)

where X and Y are the vectors of the auxiliary and the
dependent variables, respectively; W (x) is the spatial weight-
ing matrix. There are several available kernel functions, for
example, fixed Gaussian, fixed bisquare, adaptive Gaussian,
and adaptive bisquare to calculate the weighting matrix.
In this study, the adaptive bisquare kernel function and
cross-validation (CV) are used to calculate the weight and
determine the optimal bandwidth, respectively [56], [58].

In this study, the downscaled satellite-based precipitation
and related geographical factors (i.e., latitude, longitude, and
elevation) are used as auxiliary variables and the gauge-based
precipitation is used as the dependent variable to construct the
GWRK merging model. In the GWRK model, the GWR is
first applied to obtain the regression coefficients and residual
of each observation point, and then the GWR precipitation
estimates and the spatial kriged residuals using ordinary
kriging are added to obtain the final GWRK precipitation
estimates.

B. Rain Gauge Network Configurations

To investigate the impacts of different rain gauge configura-
tions including the rain gauge network density and its spatial
distribution on monthly and ten-day gauge-satellite merged
precipitation estimates, 21 different rain gauge density levels
(r) were defined, which are the ratios of the available rain
gauges to the total training rain gauges. The number of rain
gauges and the average controlling area per gauge for different
percentages of total training rain gauges (1984) are shown in
Table I. Only 50 rain gauges are present at the minimum rain
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TABLE I

NUMBER OF RAIN GAUGES AND AVERAGE REPRESENTING AREA PER GAUGE (km2) IN DIFFERENT PERCENTAGES OF TOTAL RAIN GAUGES

gauge network density, roughly 6520 km2 representing area
per rain gauge on average. The average area of each gauge is
only about 164 km2 when all 1984 training rain gauges are
used.

To analyze the effects of the rain gauge network density on
the gauge-satellite merged precipitation estimates, a roughly
uniformly distributed rain gauge combination in the whole
region for each rain gauge network density scenario is obtained
using k-means clustering. Specifically: 1) the k-means clus-
tering is first used to divide all training rain gauges (1984) to
50 categories, and then one station is randomly selected from
each category to form a network configuration of 50 training
stations in the 2.5% density scenario. If a selected station is
closest to the validation station, a new station will be reselected
randomly to ensure that the training station has a certain
distance (more than 4 km) from the validation station; 2) sim-
ilarly, using the k-means clustering to acquire 100 stations in
the 5% rain gauge density scenario from all training stations.
Calculating the spatial distances between these stations and
the 50 stations obtained in the first step and removing the
corresponding 50 stations that are closest to the reserved
stations in the previous step from the 100 stations. Then,
the remaining stations and the previous reserved 50 stations
compose the network configuration of 100 training stations
in the 5% density scenario; and 3) the other gauge network
configurations in higher density scenarios (e.g., 8%, 10%, …,
and 95%) could be iteratively obtained as step. In this way,
the numbers of stations at different gauge densities increases
successively on the basis of the obtained 50 stations in the
2.5% rain gauge density scenario. This schema ensures that
all the gauge stations at lower density levels can be selected
at higher density levels and evenly distributed in the whole
study area.

In addition, we also obtain 200 different network combina-
tions for each gauge density scenario by randomly selecting
rain gauges from the 1984 training rain gauges, to explore
the effect of rain gauge configurations on the gauge-satellite
merged precipitation estimates. This results in a total of 4201
(i.e., 21 × 200 plus the original training set of 1984 rain
gauges) different rain gauge combinations for both monthly
and ten-day precipitation estimates.

To evaluate the precipitation estimates of GWRK at
different rain gauge densities, ground observations from
220 independent rain gauges are taken as references (as
shown in Fig. 1). Three assessment indicators, that is, root-
mean-square error (RMSE), relative bias (Bias), and coeffi-
cients of determination (R2), are used.

C. Rain Gauge Network Optimization

For a limited set of rain gauges in a specific region,
the problem of rain gauge network optimization can be
formulated as finding gauge locations that provide optimal
precipitation estimates. In principal, we could try all rain gauge
combinations and identify the “best” network configuration
for a given gauge density. However, the number of combina-
tions would be tremendous for practical applications, which
would need significant computational time and may cause
“combination explosion” problem. The simulated annealing
algorithm has been used to solve this kind of large-scale
combinatorial optimization problem [59]–[61]. In this study,
we use the spatial simulated annealing to optimize the gauge
locations for gauge-satellite precipitation estimates for a given
time.

Spatial simulated annealing is a commonly used combi-
natorial optimization algorithm [61]. It is an extension of
the simulated annealing in which a series of new sampling
combinations are generated. First, an arbitrary combination
of samples is obtained. Then, the optimization is carried out
iteratively, starting from this combination, by slightly and ran-
domly shifting one station location in a random direction and
distance. For each new candidate combination, the criterion
value is calculated and compared with the criterion value
of the previous combination. The improved combination is
always accepted, while the worse combination is also accepted
with some probability to avoid local optimum [61]. As the
number of iterations increases, the probability of accepting
a worse combination reduces. The procedure repeats itself
until a fixed number of iterations have been completed,
or new candidate combinations have no improvements for
many times. In this study, the GWRK mean square error
is taken as the objective function and the spatial simulated
annealing procedure is stopped when 6000 iterations are
completed.

IV. RESULTS

A. Precipitation Estimates Using ATPK and GWRK

High spatial resolution merged precipitation data at monthly
and ten-day scales from 2010 to 2015 are generated by
combining the ground-based observations of 1984 rain gauges
with the satellite precipitation data and geographical ancillary
data (i.e., longitude, latitude, and altitude data) using the
two-stage downscaling-integration approach. In the following,
the original TMPA and IMERG precipitation data are labeled
as OTMPA and OIMERG, and the corresponding downscaled
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TABLE II

AVERAGE STATISTICS FOR THE ORIGINAL SATELLITE PRODUCTS (OTMPA AND OIMERG) AND THEIR DOWNSCALED (DTMPA AND DIMERG) AND
GWRK MERGED (DTMPA_GWRK AND DIMERG_GWRK) PRECIPITATION ESTIMATES FROM 2010 TO 2015 AT

MONTHLY AND TEN-DAY TEMPORAL SCALES

data are labeled as DTMPA and DIMERG, respectively.
The GWRK merging results of DTMPA and DIMERG with
rain gauge observations are labeled as DTMPA_GWRK and
DIMERG_GWRK, respectively. Table II presents the average
statistics of the original satellite products and their down-
scaled and GWRK merged precipitation estimates for all
months and ten days from 2010 to 2015 compared with rain
gauge observations. Fig. 2 shows the evaluation of the down-
scaled satellite precipitation data (DTMPA and DIMERG)
and GWRK merged precipitation data (DTMPA_GWRK
and DIMERG_GWRK) from 2010 to 2015 at the monthly
scale (left) and ten-day scale (right) using 220 independent ver-
ification stations’ data. Table II shows that the IMERG-based
precipitation data have an improved statistical performance
compared with the TMPA-based precipitation data, and the
downscaled satellite precipitation data have slightly better
performance than their original satellite data with smaller
RMSE and MAE values and better R2 values both at monthly
and ten-day temporal scales. Like the original satellite data,
the downscaled satellite precipitation data still have some
overestimation in the study area. The overestimation for low
precipitation level in IMERG product is much higher than that
in the TMPA product, resulting in its average Bias value larger
than that of the TMPA product.

As can be seen from Table II and Fig. 2, both monthly
and ten-day GWRK merged precipitation data show signif-
icantly improved performance than the downscaled satellite
precipitation data set. Although DIMERG has better statistical
performance than DTMPA, their GWRK merging results with
all rain gauge observations show similar evaluation index
values both at monthly and ten-day scales over the study area.
The RMSE and MAE values of the monthly precipitation
data for both satellite-based and merged precipitation data
are higher than that of the ten-day precipitation data, and
summer has higher RMSE and MAE values than winter. This
is mainly because the precipitation amount is larger at the
monthly scale than that at the ten-day scale or larger in
summer than that in winter. It is noted that some ten-day
satellite precipitation data, for example, the first ten days
of November 2010, the second ten days of February 2011,
the last ten days of January 2014, and the second ten days of
October 2015, even have more than 100% Bias values. This

could be attributed to the little precipitation at these times,
in which a small deviation value of the satellite precipitation
data may produce a large relative bias value. For example,
the average precipitation of gauge observations and DTMPA
precipitation data over the study area in the second ten days
of January 2010 are 1.33 and 3.83 mm, respectively. Their
deviation value is 2.5 mm, while their relative bias value
is 187.97%. In terms of R2, the merged monthly precipi-
tation data show higher spatial consistency with rain gauge
observations than that of the merged ten-day precipitation
data.

Fig. 3 shows the spatial distribution of the origi-
nal satellite-derived precipitation data (i.e., TMPA and
IMERG), downscaled satellite precipitation (i.e., DTMPA
and DIMERG), and GWRK merged precipitation data
(i.e., DTMPA_GWRK and DIMERG_GWRK) using all rain
gauges’ data for June 2015 and the first ten days of July
2014, respectively. It can be observed that TMPA and IMERG
have similar spatial distribution for both June 2015 and the
first ten days of July 2014. The downscaled TMPA and
IMERG precipitation data produced by ATPK preserve the
spatial information well in the original satellite precipitation
data. There is a large spatial difference between the original
satellite-derived precipitation data and the GWRK merged
precipitation data in June 2015. The heavy precipitation in
the original satellite precipitation data is mainly distributed in
the southeast of Anhui Province, while the heavy precipitation
events in the GWRK merged precipitation data are mainly
distributed in the central and southwestern regions, and the
merged heavy precipitation obviously covers less area than
that in the satellite-derived precipitation data. The spatial maps
for the first ten days of July 2014 show that the satellite
product presents similar spatial pattern as the GWRK merged
precipitation data. However, the satellite product overestimates
the magnitude of the precipitation events in the northern
regions and underestimates the magnitude of heavy precipita-
tion events in the southern regions of Anhui Province. Overall,
the GWRK merged precipitation data for both June 2015 and
first ten days of July 2014 not only have improved accu-
racy but also can more effectively reflect precipitation spa-
tial details and heterogeneity than the satellite precipitation
data.

Authorized licensed use limited to: Zhejiang University. Downloaded on April 07,2024 at 05:43:10 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: EVALUATION OF THE IMPACTS OF RAIN GAUGE DENSITY AND DISTRIBUTION 4100218

Fig. 2. Evaluation of the downscaled TRMM precipitation data (DTMPA and DIMERG) and GWRK merged precipitation data (DTMPA_GWRK and
DIMERG_GWRK) from 2010 to 2015 on (Left) monthly scale and (Right) ten-day scale.

B. Precipitation Estimates Based on Different Rain Gauge
Network Configuration Using GWRK

Fig. 4 shows the average error statistics of the GWRK
merged monthly and ten-day precipitation data from 2010 to
2015 for different rain gauge network densities. It can be seen
that the RMSE value of the merged results gradually decreases,
and the R2 value gradually increases and then level off with
the increased rain gauge network density. When the gauge
network density is low, the RMSE and R2 values vary more
than that at the high network density; the Bias values of the
merged results are close to zero at different gauge densities and
are slightly larger at low gauge densities. The merged monthly

precipitation data have higher R2 values in all different rain
gauge network densities than that of the ten-day precipitation
data. As shown in Table I, it is obvious that the merged
monthly and ten-day precipitation estimates using GWRK at
all different rain gauge network densities have better per-
formance than the downscaled monthly and ten-day satellite
precipitation data. DIMERG_GWRK has better statistical per-
formance than that of DTMPA_GWRK in terms of RMSE and
R2 values when the gauge network density is low, while their
performances are similar at high gauge network densities.

As described in Section III-B, we also obtain 200 different
rain gauge network combinations for each gauge density
scenario by randomly selecting rain gauges from the 1984 rain
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Fig. 3. Spatial distribution of the original satellite-derived precipitation data [(Left) TMPA and IMERG], the downscaled satellite precipitation data [(Middle)
DTMPA and DIMERG], and the GWRK merged precipitation data [(Right) DTMPA_GWRK and DIMERG_GWRK)] for June 2015 and the first ten days of
July 2014, respectively. Precipitation estimates based on different rain gauge network configuration using GWRK.

gauges, to examine the influence of the rain gauge configu-
rations on precipitation spatial estimation. Fig. 5 shows the
average statistics of the GWRK merged monthly and ten-day
precipitation in the study area from 2010 to 2015 at different
rain gauge network densities. The RMSE values decrease
and the R2 values increase for both the merged monthly
and ten-day precipitation data, and both gradually tend to be
stable with the increased rain gauge network density. In the
low gauge density scenarios, the Bias values of the merged
results using different gauge combinations show relatively
larger fluctuation than that in higher gauge density scenarios,
but are all within ±10%, and the fluctuations of the Bias
values for monthly gauge-satellite precipitation estimates are
less than the ten-day merged precipitation data. The results
of both the monthly and ten-day gauge-satellite precipitation
estimates derived by different spatial rain gauge combinations

all exhibit certain fluctuations. On the whole, the results at
the low gauge network densities have greater fluctuations than
that of the high densities. This indicates that the influence of
the gauge spatial distribution on the GWRK merged results
at low rain gauge network densities is greater than that at
high rain gauge network density. The gauge-satellite precip-
itation estimates using GWRK may generate more accurate
spatial precipitation estimates than slightly increasing the rain
gauge network density, if the rain gauge spatial distribution
is appropriate. On the average, the gaps of RMSE and
R2 values between DTMPA_GWRK and DIMERG_GWRK
decrease with the increase in the rain gauge network density.
When the rain gauge network is sparse, DIMERG_GWRK
is significantly better than DTMPA_GWRK, while when
the rain gauge network is dense, their performances are
similar.
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Fig. 4. Average statistics. (a) RMSE, (b) R2, and (c) Bias of the GWRK merged monthly and ten-day precipitation data from 2010 to 2015 for different
rain gauge network densities.

We compare the R2 values of the monthly and ten-day
precipitation data for dry (winter) and wet (summer) seasons at
different rain gauge network densities in Fig. 6. It can be seen
that the gauge-satellite merged precipitation estimates in the
dry season have higher R2 values than that in the wet season
at all different gauge network densities, while the variations
in R2 are larger in the wet season than that of the dry season
as the rain gauge network density increases both at monthly
and ten-day scales. In the dry season, most of the monthly and
ten-day merged results show improved performance compared
with DTMPA and DIMERG at the 2.5% rain gauge density.
Most R2 values of the monthly and ten-day merged results
in the dry season using 200 different gauge combinations
are above 0.66 and 0.50, respectively. The average R2 values
of DTMPA and DIMERG are 0.49 and 0.66 at the monthly
scale and 0.23 and 0.38 at the ten-day scale, respectively.
In the dry season, DIMERG_GWRK shows better statistical
performance than DTMPA_GWRK at the monthly scale in
the low gauge density scenarios, while it performs better than
DTMPA_GWRK at the ten-day scale in all gauge density
scenarios. The R2 values of the merged monthly precipitation

data increase slightly with the increase in the gauge network
density and level off when the network density reaches 30%.
There is a larger range for the ten-day precipitation merged
results with the rain-gauge configuration changing than that
for the monthly precipitation merged results, and the change
in the R2 values tends to be stable when the gauge density
reaches 50%. In the dry season, the zero precipitation values of
most rain gauges at some times is an important factor affecting
the performance of the GWRK merged ten-day precipitation,
which makes it difficult to solve the GWRK model parameters,
and consequently the merged effect is not good.

In the wet season, the R2 values of the GWRK merged
monthly and ten-day precipitation data both vary greatly as
the rain-gauge configuration changes. They gradually stabilize
when the gauge network density reaches 60%, and the statistics
of the monthly merged results are better than that of the
ten-day merged results, but the fluctuation is larger than that
of the ten-day merged results. The R2 values of the DTMPA
and DIMERG precipitation data are similar, that is, 0.45 and
0.46, at the monthly scale and 0.38 and 0.39 at the ten-day
scale, respectively. DTMPA_GWRK and DIMERG_GWRK at
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Fig. 5. Box plots of the average statistics. (a) and (b) RMSE, (c) and (d) R2, and (e) and (f) Bias of (Left) GWRK merged monthly and (Right) ten-day
precipitation (DTMPA_GWRK and DIMERG_GWRK) from 2014 to 2015 at different rain gauge network densities.

all gauge network densities perform better than DTMPA and
DIMERG; their average R2 values of the 200 monthly merged
results are 0.51 and 0.0.52 and are 0.45 and 0.46 for the
ten-day merged results at the 2.5% rain gauge density, respec-
tively. As the rain gauge density increases, DTMPA_GWRK
performs better than DIMERG_GWRK in the wet sea-
son. One of the reasons for this is that DIMERG_GWRK
exhibits less improvements than DTMPA_GWRK with the
increase in rain gauge density some times, such as the
last ten days of June 2010 and the second ten days of
June 2011.

The precipitation calculations at unsampled locations are
usually influenced by the neighboring gauges. Here, we use
the monthly and ten-day precipitation merged results with
200 rain gauge combinations at the 2.5% rain gauge network
density to analyze the influence of the distance between the
target pixel and its nearest gauge (Fig. 7). Theoretically, there
should be 44 000 (220 × 200) samples, and the largest distance
between the target pixel and its nearest neighboring gauge
is 326 km. After removing samples at some specific ranges,
the sample size of which is less than 30, the actual total
sample size is 43 126 and the largest distance is 141 km.
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Fig. 6. The R2 values of the (a) and (b) monthly and (c) and (d) ten-day precipitation estimates generated by GWRK for dry (winter, left) and wet (summer,
right) seasons at different rain gauge network densities.

As shown in Fig. 7, the assessment indicator values of both
the downscaled satellite-based and merged precipitation data
fluctuate greatly when the sample size is small. The RMSE
decreases, while R2 increases as the target pixel gets close
to its nearest gauge for both the monthly and ten-day pre-
cipitation data, and the gap between DTMPA_GWRK and
DIMERG_GWRK decreases simultaneously. When the dis-
tance between the target pixel and its nearest gauge is large,
the statistical performance of DIMERG_GWRK is signifi-
cantly better than that of DTMPA_GWRK, which is consistent
with the results in Figs. 4 and 5. For the monthly merged
results, when the distance between the target pixel and its
nearest gauge is within about 70 km, the DTMPA_GWRK
results perform better than that of DTMPA. For the ten-
day merged results, DTMPA_GWRK show better statistical
values than the DTMPA data, within 100 km between the
target pixel and its nearest gauge. It means that compared
with DTMPA, DTMPA_GWRK is more effective for monthly
and ten-day precipitation estimates if the distance between
the target pixel and its nearest gauge is within about 70 and
100 km, respectively. DIMERG_GWRK performs better than
DIMERG both for the monthly and ten-day precipitation
estimates if the distance between the target pixel and its
nearest gauge is within about 60 and 85 km, respectively.
It should be noted that the distance, 85 km, of the GWRK
for the ten-day precipitation data is larger than that of the

monthly precipitation estimates. It might be attributed to that
the monthly satellite precipitation data are more consistent
with ground observations than the ten-day satellite data.

C. Optimal Gauge Spatial Distribution for Precipitation
Estimates

Three different optimized gauge combinations are obtained
using the spatial simulated annealing for June 2015 and the
first ten-day of July 2014, respectively. Fig. 8 shows that the
variances of the prediction error steadily decrease and level
off with the increase in the iteration number. During these
initial phases, the smaller the number of rain gauges used
in precipitation estimation, the larger the fluctuation of the
prediction indicator values both for June 2015 and the first
ten days of July 2014. A slight variation in the rain gauge
location may cause a large change in the precipitation spatial
estimation when the rain gauges are sparsely distributed.

Fig. 9 shows the initial and optimized rain gauge net-
works of different numbers of rain gauges (i.e., 50, 159,
and 496) and their corresponding precipitation distributions
of the DIMERG_GWRK results for June 2015 and early July
2014, respectively. The rain gauge spatial location could have
a great effect on the GWRK precipitation estimates. It is
obvious that the GWRK merged results with the optimized
rain gauges’ data perform much better than the ones with
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Fig. 7. (a) and (c) RMSE and (b) and (d) R2 values of the monthly and ten-day precipitation estimates generated by GWRK as a function of distance to
the nearest gauge.

random rain gauge network designs for the sparse rain gauge
network. The optimized rain gauges by simulated annealing
for June 2015 and the first ten days of July 2014 are different
due to their different precipitation spatial distribution char-
acteristics. But they are more uniformly distributed over the
study area than the initial rain gauges by random sampling.
Comparing the GWRK merged results of these optimized rain
gauge configurations at the three rain-gauge densities, it can be
observed that the more the rain gauges, the better the merged
assessments and the finer the precipitation spatial distribution,
both for June 2015 and the first ten days of July 2014.

Fig. 9 reveals that the fewer rain gauges available,
the greater the role of the rain gauge locations have in the
gauge-satellite merged precipitation estimates. For instance,
comparable precipitation estimates (RMSE = 21.98 mm and
R2 = 0.91) could be produced using the optimized 159 rain
gauges with that using all rain gauges in the first ten days of
July 2014. Although the precipitation estimate created using
the 50 optimized rain gauge network [Fig. 9(b)] is not as good
as the one using all rain gauges in June 2015, it is still much
better than the scenario in which the initial 50 rain gauges are
used [Fig. 9(a)].

The effective representativeness of rain gauges depends on
the precipitation field structure and may have great influence
on the gauge-satellite merged precipitation estimates. Taking
the initial and optimized rain gauge networks with different

numbers of rain gauges, that is, 50, 159, and 496, as exam-
ple, the semivariograms of the precipitation observations for
June 2015 and the first ten days of July 2014 are analyzed,
respectively (Fig. 10). Compared with the case where the
initial rain gauge networks with the same density are used,
the semivariogram curves originated from the optimized rain
gauge networks are closer to the semivariogram curve using
all rain gauges. For example, the semivariogram curve of
the optimized 496 rain gauges is the closest, the case where
all rain gauges were used, while it is opposite if the initial
50 rain gauges are used for both June 2015 and the first ten
days of July 2014. Different semivariogram parameters (i.e.,
nugget, sill, and range) in two different times suggest that they
have different spatial structure characteristics of precipitation.
A higher nugget in June 2015 indicates that there is higher
variability than the early first ten days of July 2014, which will
affect the gauge-satellite precipitation estimation. At the same
gauge network density, the gauge-satellite merging estimation
with large spatial heterogeneity of precipitation structure has
higher uncertainty than that with small spatial heterogeneity
of precipitation.

V. DISCUSSION

This study explores the impacts of rain gauge network
density and spatial distribution on combined gauge-satellite
precipitation estimates. Rain gauge observation is an

Authorized licensed use limited to: Zhejiang University. Downloaded on April 07,2024 at 05:43:10 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: EVALUATION OF THE IMPACTS OF RAIN GAUGE DENSITY AND DISTRIBUTION 4100218

Fig. 8. Traces of the minimization criterion with increasing simulated
annealing iterations for (a) June 2015 and (b) first ten days of July 2014.
The three cases are with 50 (blue), 159 (orange), and 496 (gray) rain gauges,
respectively.

important input data source in gauge-satellite merging precipi-
tation estimation, and the density and spatial distribution of the
rain gauge network greatly affects the precipitation estimation.
Generally, the performance of gauge-satellite precipitation
merged results by GWRK increases and gradually levels off
with increasing rain gauge network density (Fig. 4). There are
also cases where the rain gauge network density increases but
the performance of the merged results remains the same or
slightly decrease. For instance, the ten-day DTMPA_GWRK
merged results at 75% rain gauge density have a slightly
better performance than the merged results at 80% density
in terms of RMSE and R2 statistics. If the precipitation
information obtained by some stations cannot reflect the
overall precipitation situation within a certain spatial range
of the region or is significantly different from that of other
surrounding observation stations, increasing the observations
of these stations in the gauge-satellite merged precipitation
estimates may reduce their precipitation spatial estimation
performance. It should be noted that the rain gauge network
density scenarios in Fig. 4 are designed ensuring the higher
gauge density scenarios always contain all rain gauges of
the last lower density scenario and maintaining a roughly
even distribution of the used rain gauges. If the rain gauges
increase randomly, the deterioration of precipitation estimates
may become more pronounced as rain gauges increase.

In the study area, when the rain gauge density continues to
decrease from 20% (i.e., an average density of about 821 km2

per rain gauge), the capacity of combining the gauge-satellite
precipitation data to estimate the spatial distribution of pre-
cipitation decreases rapidly; while the performance of the
gauge-satellite precipitation estimation tends to stabilize when
the rain gauge density is about larger than 50%, that is, about
329 km2 per rain gauge (Fig. 5). Similar results can still
be obtained when we use shorter period (e.g., 2013–2015)
than that of this study to analyze in the study area, but the
evaluation statistical values (i.e., RMSE, R2, and Bias) and
the variation range of the statistical values from different
rain gauge combinations at a certain density are different.
Actually, the necessary rain gauge density largely depends
on practical requirements, precipitation spatial heterogene-
ity, and regional characteristics. WMO [62] established the
minimum rain gauge density guidelines for different climatic
and geographic zones, in which the recommended minimum
densities of nonrecording stations at mountains and interior
plains are 250 and 575 km2 per station, respectively. Moun-
tainous areas with higher precipitation spatial variability have
more recommended stations. The errors of the gauge-satellite
merging estimation could also be significantly reduced by
optimizing the rain gauge distribution. An appropriate rain
gauge combination could produce higher accurate merged
results than that using a slightly higher rain gauge density.
The spatial location of rain gauges also has a great effect
on the gauge-satellite precipitation estimates. The lower the
rain gauge network density, the greater the influence of rain
gauge locations on precipitation estimates. This indicates that
great uncertainty originated from rain gauge combinations
might exist in gauge-satellite precipitation merging estimation
if available rain gauges are limited. Optimizing the rain gauge
locations to improve the rain gauge representativeness is
critical for gauge-satellite precipitation estimation especially
in areas with sparse rain gauges. Overall, optimizing the
rain gauge combination has a greater impact on precipitation
estimates than increasing a few numbers of rain gauges when
the rain gauge network density is low. Although different
optimal rain gauge configurations are observed for different
precipitation spatial distributions at different times (Fig. 9),
better gauge-satellite merged precipitation estimates could be
obtained using a more evenly distributed rain gauge net-
work (Figs. 4 and 5). Similar findings were also reported
by Xu et al. [46] and Lopez et al. [47]. In addition,
Anctil et al. [63] pointed out that better gauge-based mean
areal rainfall estimation could be achieved using reasonable
rain gauge combinations than that using all available rain
gauges; Zeng et al. [64] suggested that additional rain gauges
should be installed in mountains with more orographic rain.
It should be noted that the gauge-satellite merging algorithm
and the sampling optimization algorithm are not the focus of
this study. The results of this study emphasize the benefits of
appropriate rain gauge network configuration including density
and distribution and improved satellite-derived precipitation
data to gauge-satellite merged precipitation estimates.

The rain gauge network density and spatial distribution
also greatly affects the precipitation interpolation estimation
only using the rain gauge data. Manz et al. [65] showed
that the kriging-based precipitation estimation using only
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Fig. 9. Initial and optimized rain gauge networks with different numbers of rain gauges (i.e., 50, 159, and 496) and their corresponding precip-
itation spatial distribution of the DIMERG_GWRK results for June 2015 and the first ten days of July 2014. (a) Initial 50 rain gauges, RMSE =
80.95 mm, R2 = 0.47. (b) Optimized 50 rain gauges, RMSE = 60.31 mm, R2 = 0.65. (c) Initial 159 rain gauges, RMSE = 62.58 mm,
R2 = 0.63. (d) Optimized 159 rain gauges, RMSE = 46.16 mm, R2 = 0.79. (e) Initial 496 gauges, RMSE = 42.29 mm, R2 = 0.81.
(f) Optimized 496 rain gauges, RMSE = 36.98 mm, R2 = 0.83. (g) Initial 50 rain gauges, RMSE = 42.35 mm, R2 = 0.70. (h) Optimized
50 rain gauges, RMSE = 35.07 mm, R2 = 0.78. (i) Initial 159 rain gauges, RMSE = 35.49 mm, R2 = 0.77. (j) Optimized 159 rain gauges,
RMSE = 21.98 mm, R2 = 0.91. (k) Initial 496 rain gauges, RMSE = 32.18 mm, R2 = 0.82. (l) Optimized 496 rain gauges, RMSE = 14.12 mm,
R2 = 0.96.

rain gauge observations had a higher dependence on gauge
density than the gauge-satellite combined precipitation esti-
mation, and its performance showed a consistent deterioration
with decreasing network density. Park et al. [42] indicated
that the RMSE statistics of ordinary kriging precipitation
interpolation results increased with the available rain gauges
decreased, and the ordinary kriging method could produce
comparable precipitation spatial estimates with multivariate
kriging merging algorithms when large rain gauges were used.
Lopez et al. [47] indicated that a decrease in localized rain
gauges at high altitudes with high precipitation magnitudes
and variability could significantly reduce the ability of spatial
interpolation to precipitation estimation. In our previous

work [23], we also observed that the ordinary kriging method
produced precipitation spatial estimates with greater errors
than these geographical-based merging schemes in the rain
gauge sparse areas, and the ordinary kriging-based precipita-
tion estimates in some locations of these areas even showed
lower accuracy than the satellite-derived precipitation esti-
mates.

DIMERG_GWRK performs better than DTMPA_GWRK in
the low gauge density scenarios, but the gap decreases as the
rain gauge network density increases (Fig. 5). It implies that
the influence of the satellite-derived precipitation data on the
gauge-satellite merged precipitation estimates decreases with
the increase in the rain gauge network density. In areas where
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Fig. 10. Semivariograms of ground precipitation observations of the initial and optimized rain gauge networks for (a) June 2015 and (b) first ten days of
July 2014. The rain gauge numbers are 50, 159, and 496 respectively.

the rain gauges are sparse, the improved satellite data cannot
only provide effective supplement for ground observations but
also improve the performance of the gauge-satellite merging
estimation. The TMPA 3B42 V7 and the Version 06 IMERG
Final Run products used in this study have been rescaled using
the GPCC gauge-based reanalysis. It could be inferred that if
uncalibrated satellite data are applied in the gauge-satellite
merged precipitation estimates, the merged results may be
worse than DIMERG_GWRK and DTMPA_GWRK in the low
gauge density scenarios. Different from the results in Fig. 5,
DIMERG_GWRK performs better than DTMPA_GWRK at
the ten-day scale in all gauge density scenarios in the dry
season (Fig. 6). This result is greatly affected by some
special results. For example, the R2 values of DIMERG and
DIMERG_GWRK are 0.53 and 0.76, respectively, while the
R2 values of DTMPA and the DIMERG_GWRK are 0.01 and
0.51, respectively, at the 45% rain gauge density. When
removing these few results with large difference, the difference
variation between DTMPA_GWRK and DIMERG_GWRK
in Fig. 6 as the gauge density increases is similar to Fig. 5.

The improvement of the gauge-satellite merged precipitation
estimates is still unsatisfactory at some times, for example,
July 2013, mid-November 2014, and mid-August 2015. It is
because the gauge-satellite merging estimation is influenced
not only by the rain gauge density and location but also by the
merging algorithm, uncertainty of input data, and precipitation
spatiotemporal variability. It should be noted that the local
regression prediction of GWRK may produce negative or
unreasonable extreme precipitation values at locations where
the environment variables have high variabilities. In this
study, these prediction outliers are few in the precipitation
merged results and are replaced with the average of the
nearest eight neighboring values. The performance of the
gauge-satellite precipitation merging estimation is positively
correlated with the accuracy of the satellite precipitation data
and is negatively correlated with precipitation spatial hetero-
geneity [23]. Furthermore, rain gauge network density and
its spatial distribution are found to have a stronger influence

on the gauge-satellite merged precipitation estimates in the
wet season than that in the dry season in this study (Fig. 6),
which is partly due to the greater precipitation variability in
the wet season. The wet season has abundant rainfall and more
topographic rain in the study area. There is a large precipitation
spatiotemporal variability in the wet season, where it leads
to a large precipitation differences over small distances. The
uncertainty of the gauge-satellite precipitation estimates using
GWRK or other local estimation schemes would be large if
spatial structures and variability of precipitation could not be
well-characterized by limited ground-based measurements.

The results of this study can provide some useful guidelines
for better precipitation estimation with multi-source data at dif-
ferent network densities. Although the analysis of this study is
done for a specific basin, it is expected that the general conclu-
sions about the impacts of rain gauge network configurations
and satellite-derived data quality on the gauge-satellite precip-
itation estimation would also be applicable in other basins. But
the characteristics, for example, the variation ranges and the
threshold of rain gauge density when gauge-satellite merging
tends to be stable, would vary with basins, which are closely
related to the spatial heterogeneity of precipitation and the
satellite-derived data quality in different climatic or topo-
graphic regions. Because the local climatology conditions the
performance of satellite estimates and the spatial covariance of
the precipitation fields. The precipitation variance is strongly
scale-dependent and a robust gauge network needs to be
able to capture variabilities across many hydrological scales,
including the diurnal [66] and individual storm scales, espe-
cially in complex terrain. The impacts of rain gauge density
and distribution on the gauge-satellite merged precipitation
estimates at microtemporal scales needs to be further explored.
Delrieu et al. [35] demonstrated that the radar had clear added
value with respect to the rain gauge network for the shortest
scales. We believe that it is possible to use deep learning
methods to integrate more multi-source data such as radar-
based precipitation data, cloud parameter data, and numerical
model analysis data to obtain more precipitation spatial details.
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In this article, this data-driven approach analyzed the impact
of rain gauge configurations on precipitation estimation only
from the perspective of data. In the real design of a regional
station network, not only the representativeness of the stations
for monitoring precipitation but also the economic, population,
technological, and environmental conditions should be consid-
ered. In addition to meeting scientific needs, hydrological data
collection sites can also be established to help water managers
cope with extreme events such as floods or droughts and
distribute water supplies in competing uses. There are usually
more observation sites in densely populated and economically
developed areas than in sparsely populated areas. In further
studies, it would be interesting to investigate the influence of
more diversified climate on the gauge-satellite precipitation
estimates, including the effectiveness of the algorithms at
shorter temporal scales, for example, daily and hourly. The
geographical-model-based schemes, for example, kriging with
external drift, universal cokriging, and stratified block kriging,
are of particular values to optimize the rain gauge network
and provide quantitative guidelines for practical rain gauge
network design [67]–[69]. In addition, the impacts of the
long-time precipitation data should also be evaluated in the
optimization of rain gauge network configuration.

VI. CONCLUSION

This study examines the impacts of rain gauge network
density and its spatial distribution on the gauge-satellite
merged precipitation estimates at monthly and ten-day tem-
poral scales. Two provinces in the middle and lower reaches
of the Yangtze River of China with a high rain gauge
network density in eastern China are selected as the study
area. A two-stage downscaling-integration approach is applied
in the gauge-satellite precipitation estimation from 2010 to
2015. Various scenarios of rain gauge density and combi-
nation are designed and their corresponding merged pre-
cipitation estimates are evaluated using statistical indices.
The gauge-satellite merged results (i.e., DTMPA_GWRK and
DIMERG_GWRK) using the TMPA 3B42 V7 product and
the Version 06 IMERG Final Run product, respectively, are
compared at monthly and ten-day temporal scales. Three
different optimized gauge combinations at three different
rain gauge densities are obtained using the spatial simulated
annealing for June 2015 and the first ten days of July 2014,
respectively. In addition, the influence of the distance between
the location and its nearest gauge on gauge-satellite merged
precipitation estimates is also analyzed. The results show that:
first, the influence of rain gauge network configuration includ-
ing density and distribution on the gauge-satellite merged
precipitation estimates gradually decreases with the increase in
rain gauge density. When the gauge density reaches a certain
threshold, the statistical performance of the gauge-satellite
merged estimates tends to be stable. The gauge-satellite
merged precipitation estimates are more sensitive to the rain
gauge network density in the wet season and at ten-day
temporal scale than in the dry season and monthly temporal
scale, respectively, which have lower R2 values and larger
variability with the increase in rain gauge density. Second,
generally, DIMERG_GWRK has better statistical performance

than DTMPA_GWRK in the low gauge density scenarios,
and their gaps decrease as the rain gauge network density
increases. In areas with sparse rain gauges, improving the
quality of the satellite precipitation data would be beneficial
for the gauge-satellite merging estimation. Third, overall,
the rain gauge spatial distribution is found to play a greater role
for the correction of gauge-satellite precipitation estimation
than a slight increase in the rain gauge network density. Good
performance of the combined gauge-satellite precipitation esti-
mation can be achieved by optimizing the rain gauge network.
Better gauge-satellite precipitation merging estimates could be
obtained using a more evenly distributed rain gauge network.
It should be noted that the quality of the gauge-satellite merged
precipitation estimates using geographical local calibration
method (e.g., GWRK) may be lower than that of the original
satellite-derived precipitation data if the rain gauges are too
sparse.
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