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Abstract— Synthetic aperture radar (SAR) can be used to
obtain remote sensing images of different growth stages of crops
under all weather conditions. Such time-series SAR images can
provide an abundance of temporal and spatial features for use in
large-scale crop mapping and analysis. In this study, we propose a
temporal feature-based segmentation (TFBS) model for accurate
crop mapping using time-series SAR images. This model first
extracts deep-seated temporal features and then learns the spatial
context of the extracted temporal features for crop mapping. The
results indicate that the TFBS model significantly outperforms
traditional long short-term memory (LSTM), U-network, and
convolutional LSTM models in crop mapping based on time-
series SAR images. TFBS demonstrates better generalizability
than other models in the study area, which makes it more
transferable, and the results show that data augmentation can
significantly improve this generalizability. The visualization of
the temporal features extracted by the TFBS shows that there
is a high degree of intraclass homogeneity among rice fields and
interclass heterogeneity between rice fields and other features.
TFBS also achieved the highest accuracy of the four deep learning
models for multicrop classification in the study area. This study
presents a feasible way of producing high-accuracy large-scale
crop maps based on the proposed model.

Index Terms— Data augmentation, feature visualization, gen-
eralization ability, temporal feature-based segmentation (TFBS),
time-series images.
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I. INTRODUCTION

WORLD production has grown significantly over the past
60 years, which has greatly reduced the proportion of

hungry and undernourished people in the world. Nevertheless,
a new set of challenges threatens world food security [1]–[4].
The number of hungry people worldwide has slowly risen
since 2014, and a recent estimate for 2019 has revealed that an
additional 60 million people have become affected by hunger
during the past five years [4]. Cropland monitoring plays an
important role in understanding the state of food security
[5], [6], providing critical basic information for analyzing the
change in the crop growing area [7], fluctuation of yield [8],
and formulation of agricultural policies [9].

In recent years, with the explosive development of deep
learning technologies, a series of state-of-the-art deep learning
models has been developed and applied to the fine identifica-
tion of crop types and other features based on remote sensing
over large areas [10], [11]. Expert knowledge-based classi-
fication models and classical machine learning models, such
as support vector machines (SVMs) and random forest (RF),
typically require the extraction of effective features from raw
data either manually or through data mining techniques before
classification or modeling is performed [12]–[16]. In con-
trast, taking advantage of neural networks that imitate the
human nervous system, deep learning models are capable
of extracting massive and deep-seated features automatically
from raw images [10], [17]–[19]. Through the deepening of
neural networks and the subsequent increase in the number
of neurons, deep learning models are capable of achieving
higher performance than that of traditional machine learning
models [20]–[23].

Time-series satellite images involve rich spatial contex-
tual features and temporal features that are essential for
object recognition [21], [22], [24]–[26]. Convolutional neural
networks, which include a series of semantic segmentation
models, focus on extracting the spatial contextual information
from raw images via convolutional filters to realize end-
to-end classification [27]–[30]. The semantic segmentation
model, which includes the fully convolutional network (FCN),
SegNet, and U-network (UNET) models, is a type of model
that can classify each pixel of an image into a predefined
category based on a series of convolutional and pooling lay-
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ers [24], [30]–[33]. It generally contains an encoding structure
followed by a decoding structure. The encoding structure can
produce deep classification information, whereas the decoder
can produce precise boundaries for each class. As it is capable
of learning spatial contextual information from the local to
the global scale, semantic segmentation models have been
initially applied to cloud recognition [24], [30], [34], road
detection [32], and crop classification [35], [36], demon-
strating better performance than traditional classification
methods.

In addition, recurrent neural networks (RNNs), represented
by long short-term memory (LSTM) and gated recurrent
unit (GRU) networks, can exhibit temporal dynamic informa-
tion from raw time-series satellite images to carry out pixel-
wise classification based on a collection of fully connected
layers [37]–[39]. The same process is performed for each
element of a sequence, whereby the output of each step
depends on the computations of previous steps along with the
current input [40]–[42]. This design gives it a memory of what
information has already been presented in the sequence. LSTM
is a specific RNN that remembers information over arbitrary
intervals and is designed to deal with the exploding gradients
or vanishing gradients problem of classical RNNs [43]. It is
capable of capturing short- or long-term dependencies in
sequence data, such as time-series satellite images [22], [44].
Taking advantage of its insensitivity to interval length, LSTM
has achieved great success in the prediction and recognition
of long sequences [42], [45]. Based on previous research
conducted in recent years, LSTM is capable of efficiently
and automatically learning temporal features from time-series
images and has shown great potential in time-series image-
based crop classification [21], [42], [46].

Deep learning models usually have a considerable number
of parameters; hence, training a reliable and high-precision
model requires a large amount of training data and corre-
sponding label data [47], [48]. In recent years, a series of
medium-resolution satellites, particularly satellites equipped
with a synthetic aperture radar (SAR) instrument, have been
launched, making it possible to obtain sufficient, cloud-free
remote sensing time-series images [49], [50]. Nevertheless,
obtaining the most recent accurate and large-scale label data
is always a significant challenge for crop classification through
deep learning models. The Cropland Data Layer (CDL),
published by the United States Department of Agriculture
(USDA), provides annually produced crop-specific land-cover
maps for the continental United States. CDL provides suffi-
cient, reliable label data for training and testing novel deep
learning models [51], [52]. Based on multiyear, multiregional
CDL data, the generalizability of deep learning models, which
is critical for crop recognition in areas where reliable and large
amounts of label data are difficult to obtain, can be evaluated.

Moreover, data augmentation is a potential technique for
improving the generalizability of deep learning models [53].
It is a strategy that can significantly increase the diversity of
training data, especially when collecting the actual data from
where the model is to be applied proves difficult [54]. As deep
learning models are heavily reliant on big data to overcome
overfitting, exploring the data augmentation techniques and

evaluating their role in improving the generalizability of deep
learning models are of great importance [54]–[57].

Sentinel-1 satellites are capable of acquiring data under
all weather conditions during both day and night. Moreover,
the rapid revisit of Sentinel-1 can provide greater accuracies in
crop mapping based on the acquisition of time-series images.
Although great progress has been made in the research of
spatial–temporal deep learning models in recent years and
some spatial–temporal prediction models [e.g., ConvLSTM
(CLSTM)] [57]–[59] have been developed. Most models first
extract spatial features and then temporal features afterward;
few models learn temporal features before spatial features.
In addition, the performance of these models in crop recog-
nition based on time-series remote sensing data still needs
to be tested, and the development of new temporal–spatial
deep learning models for crop recognition based on time-series
satellite images remains important. To fully exploit and utilize
the temporal and spatial features contained in time-series SAR
data, a novel temporal feature-based segmentation (TFBS)
model is proposed in this study and used for rice recognition of
a large area located in the U.S. rice belt. Sentinel-1 SAR time-
series images were fed into the model, and CDL data were
used as label data. In addition, LSTM, UNET, and ConvLSTM
models are trained and tested based on the same dataset for
sake of comparison. The following questions are addressed in
this article.

1) What is the performance of the TFBS model com-
pared with those of the classical temporal feature-based
model (LSTM), spatial feature-based model (UNET),
and spatial–temporal prediction model (ConvLSTM)?

2) What is the temporal and spatial generalizability of the
TFBS model compared with those of the LSTM, UNET,
and ConvLSTM models?

3) What is the nature of the temporal feature used in the
TFBS model and how does it improve the classification
capability of the TFBS model?

4) Can data augmentation improve the generalizability of
the TFBS model?

5) Is it feasible to extend the binary classification model to
a multicrop classification task?

II. STUDY AREA AND DATA

A. Study Area

The study areas are located in the southern-center part of the
United States and the center of California (Fig. 1), including
areas of Arkansas (AR), Mississippi (MS), southern Missouri
(MO), western Tennessee (TN), northern Louisiana (LA), and
the Sacramento Valley (SV), which represents a significant
portion of the U.S. rice crop cultivation [60], [61]. According
to CDL data from 2019 [62], rice production in the study area
accounts for 76% of the total rice production in the United
States.

The life cycle of rice cultivars in the southern-center part of
the United States ranges from 105 to 145 d from germination
to maturity, depending on the variety and environment [63].
Rice seeding in this area is typically performed in April and
May, within a period of three to five weeks, and harvested
from September to October [64], [65]. Besides, the rice fields
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Fig. 1. Location of the study area. The study area includes AR, MS, southern MO, western TN, northern LA, and the SV of California.

in the SV are usually flooded and aerially seeded in May and
harvested from September to October [66].

B. Sentinel-1 Time-Series SAR Images

Sentinel-1 is the first satellite constellation of the Coper-
nicus Program, which was implemented by the European
Space Agency (ESA) [67]. It comprises two polar-orbiting
satellites, Sentinel-1 A and Sentinel-1 B, which share the
same orbit [68]. The orbit has a 12-day repeat cycle and com-
pletes 175 orbits per cycle. Sentinel-1 carries a C-band SAR
instrument operating in four exclusive acquisition modes
with different spatial resolutions and swath widths [69].
The interferometric wide swath model is the only opera-
tional model over the study area, which offers vertical trans-
mit, vertical receive (VV) + vertical transmit, horizontal
receive (VH) polarization data with a large swath width
(250 km) and moderate geometric resolution (5 m × 20 m).
Taking advantage of the SAR instrument, Sentinel-1 satellites
are capable of acquiring data over the study area day or night
under all weather conditions, regardless of cloud cover or solar
illumination [70], [71].

Corresponding to the rice phenology of the study area, all
Sentinel-1 VV and VH polarized SAR images from April to
October for the years 2017–2019 were selected. Sentinel-1 VV
and VH 24-day-averaged composite time-series images were
then produced based on the selected SAR images. Each of the
composite time-series images was composed of nine chan-
nels, each representing a 24-day-averaged composite image
(Table I). The time-series images were then resampled to a
resolution of 30 m to ensure consistency with the CDL data.

All the Sentinel-1 data selection and preprocessing were
completed on the Google Earth Engine (GEE) cloud plat-
form [15], [72]. GEE is a planetary-scale platform for Earth
observation and analysis, which archives a large catalog
of satellite imagery and geospatial datasets, updated and
expanded daily [73]. The Sentinel-1 dataset on GEE includes
the Sentinel-1 Ground Range Detected (GRD) images. It is

TABLE I

START AND END DATES OF THE NINE 24-DAY-AVERAGED
COMPOSITE SENTINEL-1 SAR IMAGES

provided by ESA and has been preprocessed to the backscatter
coefficient (σ ◦) in decibels (dB), which makes acquiring
Sentinel-1 data over the study area quite efficient and con-
venient [74]. Finally, the Sentinel-1 VV/VH 24-day-averaged
composite time-series images produced by GEE were down-
loaded to a local computer for subsequent study.

C. Cropland Data Layer

CDL, a 30-m resolution crop-specific land cover map pro-
duced annually for the continental United States [75], [76],
is used as reference data for model training and testing.
It was produced by the USDA, National Agricultural Statistics
Service (NASS), Research and Development Division based on
extensive agricultural ground truth and a series of moderate
resolution satellite imagery, including Landsat-8, Sentinel-2,
and Deimos [62].

CDL products from 2017–2019 were used in this study.
The 2017 CDL product was released on January 26, 2018,
the 2018 CDL product was released on February 15, 2019,
and the 2019 CDL product was released on February 5, 2020.
Based on the metadata corresponding to the CDL product,
the rice accuracy for each state area is provided [62]. The mean
kappa values of rice in the study area in 2017–2019 were
0.9058, 0.8894, and 0.9150, respectively. Meanwhile, these
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Fig. 2. Architecture of LSTM model used in this study. The first LSTM layer receives a vector with dimensions 2 × 9 from a pixel of the input VV and
VH time-series images and outputs a vector with dimensions 128 × 9, which is used as the input data of the second LSTM layer. The third LSTM layer
receives a vector with dimensions 128 × 9, which is output from the second LSTM layer and yields an output vector of dimensions 128 × 1. Finally, a sigmoid
layer is employed to generate the probability that the pixel is classified as rice. Thus, a hard classification could be applied based on a threshold of 0.5.

years’ mean user’s accuracies of rice were 97.26%, 97.40%,
and 97.42%, along with mean producer accuracies of rice were
91.04%, 89.48%, and 91.90%, respectively. The high accuracy
of the CDL data makes it a reliable dataset for the training
and testing of deep learning models [51], [52], [77].

III. METHODOLOGY

A. LSTM Model

The detailed architecture of the LSTM model used in
this study is shown in Fig. 2. The LSTM model receives
pixel-wise temporal satellite observations, including VV and
VH polarization data as input data. In the model, three LSTM
layers are employed with each layer containing 128 LSTM
units. Each LSTM unit consists of a series of LSTM time
steps (nine in this study, since there are nine time-series VV or
VH images each year). Each time step consists of three gates,
which are neurons that optionally let information through.
The first gate, denoted the “forget gate,” decides how much
information is forgotten from the old state of the previous
step. The second gate, denoted the “input gate,” decides how
much information is stored in the state of the current step.
Meanwhile, the third gate, denoted the “output gate,” decides
how much information is transported to the next step. Taking
advantage of these three gates, LSTM is capable of learning
the dependencies of long-sequence data without the presence
of gradient explosion or vanishing problems [22], [45], [46].

In this study, each LSTM unit in the first two LSTM layers
returns the hidden state output for each input time step. Thus,
nine hidden states are produced from each LSTM unit, and
each LSTM layer returns a vector with dimensions 128 × 9.
The LSTM units in the third LSTM layer only return the
hidden state of the previous time step. Therefore, the third
LSTM returns a vector with dimensions 128 × 1. Then,

a sigmoid layer is employed to generate the probability that a
pixel is classified as rice. Finally, a hard classification can be
applied based on a threshold of 0.5.

B. UNET Model

UNET is a model developed for image segmentation.
It labels each pixel of an image with a corresponding class
and uses convolutional layers instead of fully connected
layers, which makes it capable of efficiently handling images
of any size. The architecture of the UNET model used in
this study is shown in Fig. 3. UNET consists of a down-
sampling path (also called the encoder) and an up-sampling
(also called the decoder) path, which gives it a U-shaped
structure. The encoder consists of a collection of successive
convolutional and max-pooling layers, which is capable of
understanding the local context from the satellite image
on different scales. During the down-sampling pathway,
local spatial information is reduced while global contextual
information is highlighted. The decoder has a structure that
is symmetrical to the encoder, resulting from a sequence
of convolutions and up-convolutions, and the up-sampled
features are concatenated with high-resolution features from
the down-sampling path through skip connections between
the encoder and decoder. Based on this design, abundant
features and spatial information are combined to produce a
precise segmentation map [31], [33], [35].

In this study, the temporal stacked image is first split into
a collection of tiles, each of which contains 18 channels
(nine VV and nine VH channels) and has a spatial size of
128 × 128. The encoder has four 2 × 2 max-pooling layers.
Therefore, the spatial size of each tile is reduced to 8 × 8,
while the count of the channel is increased to 512. The decoder
has four up-convolutions; hence, the spatial size is restored to
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Fig. 3. Architecture of UNET model used in this study. Blue boxes represent feature images, and white boxes refer to copied feature images. The spatial
size of the input data is 128 × 128 with 18 channels (nine VV and nine VH images). The spatial size of each intermediate feature image is marked at its
lower left side. The count of the channel of each intermediate feature image is marked on its top side. The output data is the probability of each pixel of the
image to be labeled as rice. A hard classification map could be generated based on the probability map, using a threshold of 0.5.

128 × 128, and the count of the channel is reduced to 32.
Finally, a 1 × 1 convolutional layer and a sigmoid layer are
used to produce a segmentation map that has the same spatial
size as the input image tile.

C. Convolutional LSTM

ConvLSTM is the extension from a fully connected LSTM
(FC-LSTM) and is capable of learning spatiotemporal correla-
tions from raw time-series data. It has convolutional structures
in both input-to-state and state-to-state transitions [78], [79].
In this study, the training image is split into tiles of size
128 × 128. Then, each tile is reshaped to dimensions of
9 × 2 × 128 × 128 and fed to the ConvLSTM model. Then,
two ConvLSTM layers are stacked to build an end-to-end
model for time-series SAR image-based crop classification.
Each ConvLSTM layer consists of 64 ConvLSTM2D units.
Each ConvLSTM2D unit is just like the LSTM unit, but
internal matrix multiplications are replaced with convolution
operations. Finally, a 1 × 1 convolutional layer and a sig-
moid layer are used to produce soft classification, based on
the spatial–temporal features extracted by the ConvLSTM
layers; then, hard classification can be carried out based on a
threshold of 0.5 (Fig. 4).

D. TFBS Model

The TFBS model contains four modules: an input module,
temporal feature extraction module, segmentation module, and
output module. It employs an LSTM model matrix to learn
temporal features from raw time-series satellite images and
produces an image consisting of these temporal features. The
temporal feature image is then input into a UNET module to
extract spatial context information from the temporal features
and produce a segmentation image (Fig. 5).

Fig. 4. Architecture of ConvLSTM model. The input image has a dimension
of 9 × 2 × 128 × 128, the output feature image of each ConvLSTM layer has
a dimension of 64 × 2 × 128 × 128. The output of the second ConvLSTM
layer is input into a 1 × 1 convolutional layer and a sigmoid layer to produce
a soft classification image.

1) Input module: The input data of the TFBS model is
an image tile that is clipped from the original input
satellite image. The dimensions of the input data are
18 × 128 × 128, which represents the channel count,
width, and height. Then, a reshape layer is used to
dissolve the input image into independent pixels. Each
pixel has dimensions 2 × 9, which means that it has two
features (VV and VH), each of which containing nine
time-series images from April to October.

2) Temporal Feature Extraction Module: The temporal fea-
ture extraction module consists of a 128 × 128 LSTM
model matrix and a reshape layer. Each LSTM model
corresponds to one pixel from the input module. Each
model in the LSTM matrix is exactly the same because
they have the same model structure and parameter values
(weights and bias). The LSTM model has one LSTM
layer that consists of 64 LSTM units; thus, 64 temporal
features are generated from each LSTM model (each
unit returns only the hidden state of the final time
step). Finally, all the temporal features from the LSTM
model matrix make up a temporal feature image with
dimensions 64 × 128 × 128, based on the reshape layer.
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Fig. 5. Architecture of TFBS model. The input image is dissolved into independent pixels, and an LSTM model is applied to each pixel. Thus, 64 temporal
features are learned from the raw time-series image and are used as the input data of a UNET segmentation model. Finally, a segmentation map is generated
based on the combination of temporal and spatial contextual information.

3) Segmentation Module: A UNET model is employed to
segment the temporal feature image in the segmentation
module. The structure of the UNET model is similar to
that shown in Fig. 3. The down-sampling path of the
UNET model reduces the spatial size of the input data
from 128 × 128 to 8 × 8 and increases the feature count
from 64 to 512. Hence, during the down-sampling path-
way, the local spatial information is reduced, whereas
the abstract feature information is increased. During
the up-sampling path, the spatial size of the feature
image is restored to 128 × 128, whereas the channel
size is reduced to 32. Based on skip connections and
concatenations, detailed spatial information is combined
with abundant feature information to produce a precise
segmentation image.

4) Output Module: A 1 × 1 convolutional layer with only
one neuron is applied to obtain a one-channel image;
then, a sigmoid layer is used to map the image value
between 0 and 1 and realize the soft classification of
the image. A hard classification result can be obtained
based on the soft classification map, using a threshold
of 0.5.

E. Workflow of the Study

To fully assess the performance of the TFBS model,
we divide the study area into three parts to test the performance
of the TFBS model and evaluate the temporal and spatial
generalizability. The first part accounts for the majority of
the study area, including AR, MS, southern MO, and western
TN (hereinafter referred to as ARMSMOTN). The second
and third parts represent northern LA and SV of California,
respectively.

The Adam optimizer is employed in all four models, and
the cross-entropy metric is used as the loss function in the

training process. The performances of the LSTM, UNET,
ConvLSTM, and TFBS models are evaluated using datasets
from ARMSMOTN in 2019, with 10-fold cross validation used
as the evaluation method. This method randomly partitions
the original dataset into ten equally sized subdatasets. Then,
a single subdataset is retained as the validation dataset, and
the remaining nine subdatasets are used as training data. This
process is repeated ten times, with each of the ten subdatasets
used exactly once as the validation dataset. A final estimation
can then be calculated by averaging the ten results. The
standard deviation of the estimation could also be calculated
to assess the stability of all four deep learning models.

The growth period of crops varies slightly because the
climate conditions vary from place to place and year to year.
Therefore, when the model trained in a specific year and
place is applied to other years or other places, its accuracy
in crop classification is affected by the temporal and spatial
generalizability of the model. In this study, all the data
from ARMSMOTN in 2019 were used to train four deep
learning models. The datasets from ARMSMOTN in 2017 and
2018 were used to evaluate the temporal generalizability of
the trained deep learning models. In addition, with a view to
further testing the spatial–temporal generalizability of the deep
learning models, the datasets from northern LA in 2017–2019
were used as validation data to test the deep learning models
trained with the ARMSMOTN 2019 dataset.

Besides, deep learning models which pretrained using the
ARMSMOTN 2019 dataset are applied to the SV region for
rice mapping. Due to the sowing date of rice in SV is relatively
late than that in ARMSMOTN, it is not practical to map
rice in SV by using the pretrained model directly. Therefore,
fine-tuning method is employed to adapt pretrained models
to new areas [80]. The parameters of the output layer for
each pretrained deep learning model are initialized as zero,
while the parameters of other layers are retained. An image tile
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Fig. 6. Illustration of data augmentation. (a) Original SAR image. (b) Rotated
90◦ clockwise. (c) Rotated 180◦ clockwise. (d) Rotated 270◦ clockwise.
(e) Flipped vertically. (f) Flipped horizontally.

with a spatial size of 128 × 128 pixels and its corresponding
CDL image is randomly selected from the SV 2019 dataset.
The selections are used to retrain the new output layer for
each pretrained deep learning model. Based on the fine-tuned
model, the rice classification results in the SV area from
2017 to 2019 are obtained, and the classification accuracy is
evaluated by using CDL data as reference. In order to ensure
the reliability of the results and the stability evaluation of
the fine-tuning for each model, this process was repeated ten
times. The mean and standard deviation of each classification
accuracy metric are calculated and used for model evaluation.

Data augmentation is a useful technique to increase the
amount and the diversity of the training data. The effects of
data augmentation on the spatial and temporal generalizability
of the TFBS model are evaluated in this study. Several aug-
mentation techniques, including spatial augmentation (rotation
and flipping) and temporal augmentation (random scaling of
backscatter coefficient), are used to increase the size of the
dataset from ARMSMOTN in 2019. The raw tile images
are first randomly rotated 90◦, 180◦, or 270◦ clockwise
[Fig. 6(b)–(d)]; then, the rotated images are multiplied by a
random value between 0.9 and 1.1 to increase the fluctuation
of the time-series curve of the sample data. In addition,
each raw tile image is flipped vertically or horizontally
[Fig. 6(e) and (f)], and the flipped image is subsequently
multiplied by a random number between 0.9 and 1.1. Thus,
the size of the training dataset is tripled.

This study also attempts to explore and visualize the
intermediate temporal features, which are abstract features
learned from the LSTM module of the TFBS model. Both
the Jeffries–Matusita (J–M) and transformed divergence (TD)
separability measures are used [81], [82] to evaluate the
improvement in the classification ability of temporal features
compared with the original time-series images.

Finally, the performance of multiclass classification is dis-
cussed based on a combination of binary classification models,
in which four independent binary classification models are
trained separately based on the augmented ARMSMOTN
2019 dataset and CDL for corn, cotton, rice, and soybeans,

the primary crop types in the study area. Each model is used
to produce a soft classification result for a particular crop.
The soft classifications of each crop are then multiplied by a
weight, which is defined by the validation precision value of
each model, for which the precision value represents the prob-
ability of a correct prediction. For each pixel, according to the
weighted soft classification results of four crops, the category
with the largest value is selected as the final crop category.
The formula is given as

Cm,n = arg max
(

Si
m,n × (Si

m,n ≥ 0.5) × Pi
)

(1)

where Cm,n represents the final category of the pixel at location
(m, n), i represents category i , S represents the sigmoid result,
and P represents the precision value. Argmax is a function
which returns the category index of the maximum value.

All the experiments were implemented based on Python 3.7.
Keras with a TensorFlow backend was used to develop,
train, and test the deep learning models. The geospatial
data abstraction library (GDAL) is used to process raster
images. The version of Keras employed in this study is
2.3.1, the version of TensorFlow is 2.2.0, and the version
of GDAL is 2.3.3. All the processes were performed on a
Windows 10 workstation with an AMD Ryzen Threakripper
1950X (3.4 GHz/16 Cores/32 MB Cache), 96 GB of RAM,
and two NVIDIA GeForce GTX 1080 Ti graphics cards (each
with 11 GB of video RAM). The dataset from ARMSMOTN
in 2019 is used to evaluate the training time from each model,
and the dataset from ARMSMOTN in 2018 is used to evaluate
the prediction time from each deep learning model.

F. Accuracy Assessment

CDL maps of the study area in 2017–2019 were used as
a reference to evaluate the accuracy of the model prediction,
whereby four metrics were used to measure the accuracy of
each model—Cohen’s kappa coefficient, recall, precision, and
F-score.

Cohen’s kappa coefficient is a measure of agreement
between the reference and predictions. This indicates the
proportion of agreement beyond that expected by chance [83].
For a binary classification problem, the definition of Cohen’s
kappa coefficient is

kappa = (po − pe)/(1 − pe) (2)

po = 1

N

2∑

i=1

ncorr
i (3)

pe = 1

N2

2∑

i=1

npred
i nref

i (4)

where po is the probability of correct prediction, which can be
calculated by dividing the total number of correctly classified
pixels by the total number of pixels, and pe is the probability of
agreement expected by chance. N is the total number of pixels,
ncorr

i is the number of pixels in category i that are correctly
classified, npred

i is the total number of pixels in category i in
the classified image, and nref

i is the total number of pixels in
category i in the reference image.
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Fig. 7. Final result of the average F-score, kappa coefficient, precision, and
recall of UNET, LSTM, TFBS, and ConvLSTM models, assessed by 10-fold
cross validation method based on the dataset from ARMSMOTN in 2019.
Error bars in the figure represent one standard deviation from the average
accuracy.

Recall is the proportion of correctly classified pixels of
category i to the total number of pixels of category i in
the reference image. Precision is the proportion of correctly
classified pixels of category i to the total pixels of category i
in the classified image. Recall and precision can be calculated
from the following:

Recalli = ncorr
i /nref

i (5)

Precisioni = ncorr
i /npred

i (6)

where Recalli denotes the recall score of category i and
Precisioni denotes the precision score of category i .

F-score is a measure of the test’s accuracy, which considers
both the precision score and the recall score

Fi = 2 × Recalli × Precisioni

Recalli + Precisioni
(7)

where Fi is the F-score of category i .

IV. RESULTS AND DISCUSSION

A. Performance of TFBS Model Compared With
Other Models

Fig. 7 shows that TFBS significantly outperformed UNET,
LSTM, and ConvLSTM in all four accuracy metrics. The
TFBS model produces the highest average kappa, F-score, pre-
cision, and recall scores of 0.8824, 0.8899, 0.9116, and 0.8711,
respectively. Meanwhile, the ConvLSTM model achieves
the second highest accuracy, slightly higher than the UNET
model, and much higher than that of the LSTM model.
This indicates that the combined use of temporal and spatial
information can improve the accuracy of crop recognition
based on time-series images.

The accuracy trends across the training epochs are shown
in Fig. 8. This indicates that the LSTM model starts to
converge at five epochs, whereas the other models start to
converge at approximately 15 epochs. The standard deviation
also shows that LSTM is much more stable than the UNET,

Fig. 8. Change in (a) F-score, (b) kappa coefficient, (c) recall, and
(d) precision of each model across 30 epochs. All the accuracy metrics are
evaluated based on 10-fold cross validation technology using the dataset from
ARMSMOTN in 2019. Thus, each model is trained and tested ten times. The
red lines represent the trends of the mean accuracies of the TFBS models
with each epoch spanning the training process, whereas the orange lines
represent those of the LSTM models, blue lines represent those of the UNET
models, and green lines represent those of the ConvLSTM models. The light
buffer areas along the lines refer to one standard deviation from the mean
accuracy.

TFBS, or ConvLSTM models during cross-validation. The
UNET and ConvLSTM models are very sensitive to the change
in samples, as the accuracy of these models trained with differ-
ent samples varies greatly in the cross-validation process. The
classification accuracy of the TFBS model exhibits medium
stability, as the standard deviations of each metric are higher
than those of the LSTM model but lower than those of the
UNET and ConvLSTM models (Figs. 7 and 8).

Three typical sites from the study area are selected to illus-
trate the classification results of LSTM, UNET, ConvLSTM,
and TFBS models (Fig. 9). The classification results produced
by TFBS are much closer to the CDL maps than those of
the LSTM and UNET models. Two advantages lead to the
outperformance of the TFBS model over the UNET and
LSTM models. First, compared with the UNET model, the
TFBS model contains an LSTM module that is capable of
recognizing rice pixels with weak temporal signals, as it can
learn deep temporal information from the raw time-series
images of SAR; in contrast, the UNET model may omit them,
causing omission problems (blue rectangles marked in Fig. 9).
Second, compared with the LSTM model, TFBS employs a
UNET module to obtain the spatial contextual information
contained in the temporal features for segmentation, which
could produce complete rice fields in the classification result.
The raw SAR images are naturally full of speckle noise,
which could cause a strong “salt-and-pepper” effect on the
result of a pixel-wise classification method such as LSTM
(red rectangles marked in Fig. 9), as only the spectral or
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Fig. 9. Illustration of VV backscatter coefficient images (July 6, 2019) and the corresponding classification results based on different deep learning models.
Blue rectangles on the maps denote omission errors of UNET model that other models do not exhibit. Red rectangles on the maps denote spackle problems
of LSTM model that other models do not contain.

temporal information from each independent pixel are taken
into account without consideration of its spatial context. Both
the TFBS and UNET models are capable of learning spatial
context on different scales based on the design of convolutional
and max-pooling layers. This characteristic gives them the
ability to reduce the negative impact of speckle noises on
SAR data. Taking advantage of the combined use of LSTM
and UNET modules, the TFBS model is a more suitable
deep learning method than LSTM or UNET to perform crop
recognition based on time-series SAR images. Moreover,
TFBS also shows a better classification result than ConvLSTM
(Fig. 9). ConvLSTM uses a convolution network instead of a
full connection layer in traditional LSTM; thus, it can better
extract spatiotemporal information. However, unlike clouds,
water cover, or other moving targets, the change in crop plots
over time is revealed spectrally rather than spatially. Therefore,
to perform fine crop classification based on time-series SAR
images, extracting the temporal features of each pixel first
followed by the extraction of the spatial features might be more
optimal.

B. Temporal Generalizability

The dataset of ARMSMOTN in 2019 is used to train TFBS,
LSTM, UNET, and ConvLSTM models. Then, the trained
models are used to produce the rice maps of ARMSMOTN
in 2017 and 2018. CDL data were used as the reference
data. The accuracies of the different models are illustrated
in Fig. 10, which shows that all four models have certain levels
of temporal generalizability. The TFBS model achieved the
highest F-score and kappa score, implying that it is appropriate
to apply the trained TFBS model to produce crop maps
of the same region for other years. The ConvLSTM model
achieved the second highest accuracy for both years, which

shows that using spatiotemporal information performs better
than that using only temporal or spatial information in crop
classification based on SAR time series.

C. Spatial–Temporal Generalizability

To assess the spatial generalizability of the TFBS model
compared with other models, the models trained with the
ARMSMOTN dataset in 2019 are applied to northern LA
in 2019. In addition, we also assessed the prediction accuracy
of the trained model to northern LA in 2017 and 2018 to
evaluate the generalizability of each model for different places
and different years. The accuracies of all four models for
2017–2019 are shown in Fig. 11.

Fig. 12 shows the time-series VV and VH curves of rice
fields based on CDL, indicating that the time-series VV and
VH curves of northern LA in 2019 are similar to those of
ARMSMOTN in 2019, which can explain why the accuracies
of the three models in 2019 are relatively high. The time-
series VV and VH curves of rice in northern LA in 2017 and
2018 were slightly different from those of ARMSMOTN
in 2019, especially in early April. The extremely low backscat-
ter coefficients at VV and VH indicate that in early April of
2017 and 2018, most of the rice fields in northern LA were
already flooded, while not until late April were the rice fields
in ARMSMOTN flooded. The differences in the rice phenolog-
ical period in 2017 and 2018 can be used to test the temporal
generalizability of each model. The kappa and F-scores of
TFBS for all three years are substantially higher than those
of the LSTM and UNET models (Fig. 11), clearly indicating
that the spatial and temporal generalizability of TFBS is
superior to those of the other models, especially for a different
place and year. ConvLSTM achieves the second highest kappa
and F-scores in all three years, indicating the advantages
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Fig. 10. Illustration of classification accuracies of UNET, LSTM, ConvLSTM, and TFBS models in 2017 (with red background) and 2018 (with green
background). All the four models are trained with the ARMSMOTN dataset in 2019. CDL data is used as reference data to assess the accuracies.

Fig. 11. F-score, kappa coefficient, precision, and recall of UNET, LSTM, ConvLSTM, and TFBS models trained by the dataset of ARMSMOTN in 2019 and
tested by the dataset of northern LA in 2017–2019.

Fig. 12. Time-series curves of backscattering coefficients at VV and VH of rice for different areas and years. The lines in the figures refer to the mean
backscatter coefficient values of all rice pixels at different areas and different years. The light buffer areas along the lines refer to one standard deviation from
the mean value.

of the integrated use of spatial and temporal information
in crop mapping based on time-series SAR images. It also
shows that the accuracy of the UNET model declined sharply
in 2017 and 2018 compared with 2019, which indicates
that the spatial–temporal generalizability of UNET is poorer

than that of the temporal feature-based classification models.
LSTM, ConvLSTM, and TFBS are capable of learning deep
temporal features from the raw time-series images; hence, they
are capable of handling the subtle variability of the phenophase
of rice in different years (Fig. 12).
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Fig. 13. Rice mapping accuracies of the fine-tuned deep learning models. The models were pretrained by ARMSMOTN 2019 dataset and transferred to SV
based on fine-tuning technology. The CDL data of SV from 2017 to 2019 were used as reference data.

Fig. 14. Illustration of 64 deep temporal features extracted from raw time-
series SAR images. Each image is composed of three temporal features in
sequence as R/G/B-bands. The last image is composited of the 64th feature,
the first feature, and the second feature. Polygons with black boundary denote
rice fields from CDL.

D. Rice Mapping Based on Fine-Tuned Deep
Learning Models

Four deep learning models were pretrained by
ARMSMOTN 2019 dataset and then applied to the SV based
on fine-tuning method for rice mapping from 2017 to 2019.
CDL data were used to evaluate the classification accuracy
from each model. Fig. 13 shows that TFBS significantly
outperforms UNET, LSTM, and ConvLSTM in all three years

Fig. 15. Accuracies of TFBS models before (blue bars) and after data
augmentation (orange bars). Dataset from ARMSMOTN in 2019 is used as
training data, and the ARMSMOTN datasets from 2017 (red background) and
2018 (green background) are used as test data.

Fig. 16. Accuracies of TFBS models before (blue bars) and after data
augmentation (orange bars). Dataset from ARMSMOTN in 2019 is used as
training data, and the northern LA datasets from 2017 (red background),
2018 (green background), and 2019 (blue background) are used as test data.

in SV’s rice mapping, the average F-score of which is 15.2%,
5.7%, and 4.7% higher than that of UNET, LSTM, and
ConvLSTM, respectively. Meanwhile, the stability of TFBS
model is also higher than the other three of which shows a
much lower standard deviation of classification accuracy. The
results show that it is feasible to apply a pretrained model to
areas with different rice phenology for rice mapping based
on fine-tuning technology and a small number of samples.

E. Exploring the Temporal Features Extracted From
Raw Time-Series Images

Although the temporal features extracted by the LSTM
matrix module of the TFBS model are abstract long- or
short-term dependencies of rice fields existing in the time-
series SAR images, they can still be visualized to explore
how they work based on qualitative and quantitative analysis.
An example of the intermediate temporal features mined from
the raw time-series SAR images is shown in Fig. 14. The
separability indicators of rice in the raw time-series SAR
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TABLE II

SEPARABILITY INDICATORS OF RICE IN RAW TIME-SERIES SAR IMAGES AND INTERMEDIATE TEMPORAL FEATURES MINED BY TFBS MODEL

Fig. 17. Classification accuracies of UNET, LSTM, TFBS, and ConvLSTM models. The models are trained with the augmented ARMSMOTN 2019 dataset
and tested with the ARMSMOTN 2018 dataset. F represents the F-score, R represents the recall, and P represents precision.

images and the intermediate temporal features are shown
in Table II.

Fig. 14 clearly demonstrates the high degree of intra-
class homogeneity of the rice fields and the high degree
of interclass heterogeneity between the rice fields and other
categories. Table II shows that the separability of temporal
features is much higher than that of the raw time-series SAR
images. Both the J–M distance and TD value obtained from
the extracted temporal features reached a maximum of 2.0,
outperforming the values for the raw SAR images, which
were 1.350 and 1.485, respectively. Taking advantage of these
abundant intermediate temporal features mined from the raw
time-series images, the TFBS model is capable of producing
higher-accuracy segmentation maps than the UNET model.

F. Improvement of Spatial–Temporal Generalizability of
TFBS by Data Augmentation

Data from ARMSMOTN 2019 were used as the train-
ing dataset. The raw training dataset contained 6607 image
tiles (each consisting of 128 × 128 pixels), whereas the
augmented training dataset contained 19 821 image tiles.
The results show that data augmentation can significantly
improve the spatial and temporal generalizability of the TFBS
model (Figs. 15 and 16). The prediction accuracy was sig-
nificantly improved after the augmentation of training data
in both ARMSMOTN and northern LA, except in 2019.

Fig. 18. Confusion matrixes of UNET, LSTM, TFBS, and ConvLSTM
models. The models are trained by the augmented ARMSMOTN 2019 dataset
and tested by the ARMSMOTN 2018 dataset.

The kappa coefficient increased by an average of 2.40% after
augmentation. The F-score increased by an average of 2.43%
after augmentation.
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Fig. 19. Time-series curves of backscattering coefficients at VV and VH of
corn, cotton, rice, and soybeans in ARMSMOTN in 2018. The lines refer
to the mean backscatter coefficient values of all pixels of different crops in
the study area. The light buffer areas along the lines refer to one standard
deviation from the mean value.

Fig. 20. (a) CDL and multicrop classification results produced by
(b) TFBS, (c) ConvLSTM, (d) LSTM, and (e) UNET models in ARMSMOTN
in 2018. ARMSMOTN represents the region of AR, MS, southern MO, and
western TN.

G. Performance of TFBS Model on Multicrop Classification

Figs. 17 and 18 indicate that TFBS significantly outperforms
the UNET, LSTM, and ConvLSTM models for multiclass
classification. The kappa value of the TFBS model reaches
0.8230, whereas those for UNET, LSTM, and ConvLSTM
reach 0.7840, 0.7465, and 0.7691, respectively. The TFBS
model also achieved the highest accuracy for three of the
four crops—cotton, rice, and soybeans. Among all four crops,
the classification accuracy of rice is significantly higher than
that of the other three crops, which is mainly due to the
easy recognition of irrigation characteristics during the rice
transplanting period. During the entire growth period, the
VV and VH values of rice are generally lower than those
of other crops (Fig. 19). Cotton is easy to confuse with
soybeans, resulting in low accuracy. This is mainly because
the time series curve of cotton is very close to that of soybeans
(Fig. 19). The CDL data and multicrop classification results of
each model are shown in Fig. 20. Based on the above analysis,
multi-crop classification based on time-series SAR and the

TABLE III

TRAINING AND PREDICTION TIME OF FOUR DEEP LEARNING MODELS

TFBS binary classification model is feasible and can obtain
high classification accuracy.

H. Comparison of the Efficiency of Each Model

Table III shows that UNET has the highest efficiency
compared with other models, followed by TFBS, and then
ConvLSTM, while LSTM is significantly higher than other
models in both training and prediction time. TFBS has rela-
tively high efficiency and the best performance in classifica-
tion accuracy, which is significantly great for large-area crop
mapping.

V. CONCLUSION

In this study, a novel TFBS model is proposed to per-
form paddy rice classification based on the combined use
of temporal features from raw time-series SAR images and
their spatial contextual information. The performance of the
TFBS model was evaluated using the time-series Sentinel-1
VV and VH images acquired over the study area in AR, MS,
southern MO, western TN, northern LA, and SV, together with
three state-of-the-art deep learning models (LSTM, UNET,
and ConvLSTM). The results show that the TFBS model
outperforms LSTM, UNET, and ConvLSTM models in the
study area. The kappa, F-score, precision, and recall scores of
the TFBS model are significantly higher than those of the
other models. The abundant temporal features mined from
raw time-series SAR images by the LSTM module of TFBS
achieve higher J–M and TD values than raw images, which
makes TFBS more suitable for time-series image segmen-
tation than UNET. TFBS also shows the best spatial and
temporal generalizability when the trained models are applied
to a different year or place. This study also evaluates the
effect of data augmentation on the accuracy of the TFBS
model, revealing that the generalizability of the TFBS model
demonstrates substantial improvement after data augmentation,
showing higher accuracies than the TFBS model without data
augmentation. TFBS also shows the best performance in multi-
class classification in the study area, showing the potential of
the TFBS model in multicrop classification based on time-
series SAR data.

Several aspects still need to be investigated based on the
current study. It would be useful to apply the TFBS model
trained with CDL data to other countries/regions plagued
by insufficient sample data. Data augmentation technology
and fine-tuning method are two feasible ways to achieve
that goal. Meanwhile, with the increase in available remote
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sensing data, the temporal resolution of time series data will
be further improved, and multisource satellite data will be used
to improve the ability of large-scale crop mapping based on
deep learning technology.

APPENDIX

The code of the TFBS model used in this study together
with the dataset of ARMSMOTN in 2019 are available at
https://github.com/younglimpo/TFBSmodel.
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