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1  |  INTRODUC TION

Managing C inputs to soil has been recommended to seques-
ter C in order to mitigate climate change (Lal, 2004). However, 

the consequence of input changes on long- term soil C balance is 
difficult to be predicted and widely debated (Song et al., 2019; 
Terrer et al., 2021). A fundamental cause is that C inputs may 
stay for short or long timescales in soil depending on climatic and 
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Abstract
Soil carbon (C) is comprised of a continuum of organic compounds with distinct ages 
(i.e., the time a C atom has experienced in soil since the C atom entered soil). The 
contribution of different age groups to soil C efflux is critical for understanding soil 
C stability and persistence, but is poorly understood due to the complexity of soil C 
pool age structure and potential distinct turnover behaviors of age groups. Here, we 
build upon the quantification of soil C transit times to infer the age of C atoms in soil 
C efflux (aefflux) from seven sequential soil layer depths down to 2 m at a global scale, 
and compare this age with radiocarbon- inferred ages of C retained in corresponding 
soil layers (asoil). In the whole 0– 2 m soil profile, the mean aefflux is 1941021

21
 (mean with 

5%– 95% quantiles) year and is just about one- eighth of asoil (1476
2547

717
 year), demon-

strating that younger C dominates soil C efflux. With increasing soil depth, both aefflux 
and asoil are increased, but their disparities are markedly narrowed. That is, the propor-
tional contribution of relatively younger soil C to efflux is decreased in deeper layers, 
demonstrating that C inputs (new and young) stay longer in deeper layers. Across the 
globe, we find large spatial variability of the contribution of soil C age groups to C ef-
flux. Especially, in deep soil layers of cold regions (e.g., boreal forests and tundra), aefflux 
may be older than asoil, suggesting that older C dominates C efflux only under a limited 
range of conditions. These results imply that most C inputs may not contribute to long- 
term soil C storage, particularly in upper layers that hold the majority of new C inputs.
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soil physiochemical conditions (Crowther et al., 2016; Jackson 
et al., 2017; Terrer et al., 2019), reflected by distinct C turnover be-
haviors and persistence among soils. Such turnover behaviors and 
persistence can be described by soil C transit times. Transit time is 
defined as the time elapsed since a C atom entered soil until it exits 
via any efflux pathways (Sierra et al., 2017, 2018). At steady state, 
soil C efflux is equal to influx, thus transit time can be calculated 
as the ratio of soil C stock to C output or input (Fan et al., 2020; 
Luo et al., 2019), representing the mean age of C atom in the ef-
flux (Metzler & Sierra, 2018); hereafter, we call it aefflux. Relying on 
depth- resolved output or input (e.g., belowground net primary pro-
duction [BNPP]), we can estimate mean transit times in different soil 
depths, which is a key step toward reliable prediction of whole- soil 
C dynamics and long- term soil C sequestration under changing C in-
puts induced by climate change and land management.

By comparing aefflux with the mean age of C in the soil (asoil, i.e., 
the mean time a C atom has experienced since the C atom entered 
soil), another dimension of information on the contribution of soil C 
age groups to effluxes can be obtained. This contribution is import-
ant for understanding the persistence of soil C pools in different ages, 
which may range from days to millennia. Soil radiocarbon measure-
ments combined with C models have been widely employed to infer 
asoil (Balesdent et al., 2018; He et al., 2016; Shi et al., 2020). Three 
categories regarding the relations between aefflux and asoil exist, and 
each has its own valuable meaning for interpreting soil C dynamics 
(Bolin & Rodhe, 1973; Sierra et al., 2018). If aefflux = asoil (type I rela-
tion), released C is at the same age as retained soil C. It implies that  
all soil C compounds regardless of chemical structure and phys-
ical  accessibility have the same probability of being released. If 
aefflux < asoil (type II relation), released C is younger than existing soil 
C. In this type of soil, most C atoms enter and leave soil in a relatively 
short time, but those atoms that remain in the soil stay there for a 
long time. If aefflux > asoil (type III relation), released C on average is 
older than retained soil C. That is, new entering C atoms stay for a 
long period before exiting. This may occur when C is only released 
after sequential transport from one physical or chemical state to an-
other (Sierra et al., 2018). For example, big molecules of plant mate-
rials may have to be fragmented into small molecules via any physical 
or chemical pathways before being released. Above all, the relation 
between aefflux and asoil is indicative of transformation and stabiliza-
tion processes of soil C. Process- based soil C models usually predict 
type II relation (Sierra et al., 2018). A number of studies have also sep-
arately quantified aefflux (Carvalhais et al., 2014; Luo et al., 2019) or 
asoil (Balesdent et al., 2018; Braakhekke et al., 2014; He et al., 2016; 
Shi et al., 2020). However, there is a lack of a comprehensive quan-
tification of aefflux, asoil, and their relations at the global scale using 
consistent data and methods, particularly at fine spatial resolutions. 
Particularly, to our knowledge, no previous studies have addressed 
the relation between aefflux and asoil across soil depths. This informa-
tion is vital for understanding soil C stability and persistence and pre-
dicting soil C dynamics under climate and land use changes.

In this study, we build upon global datasets of BNPP and root 
biomass depth distribution to develop machine learning- based 

predictive models. Then, the models are used to digitally map depth- 
resolved soil C inputs represented by BNPP and interlayer transport 
of soil C. Combined with a global mapping product of soil C stocks— 
WISE30sec (Batjes, 2016), aefflux is estimated by dividing soil C stock 
over inputs in the 0– 2 m soil profile as well as in seven sequential soil 
layer depths down to 2 m (0– 0.2, 0.2– 0.4, 0.4– 0.6, 0.6– 0.8, 0.8– 1.0, 
1.0– 1.5, and 1.5– 2.0 m) across the globe at the resolution of 0.0083° 
(which is equal to 1 km2 at the equator). At last, we conduct a pixel- 
to- pixel comparison of aefflux to asoil inferred from a one- pool radio-
carbon model constrained by a global dataset of soil radiocarbon 
measurements. Ultimately, we are aiming to quantify the spatial pat-
tern of aefflux and asoil and their relation across biomes and through 
soil depths, and investigate underlying environmental drivers.

2  |  MATERIAL S AND METHODS

2.1  |  The relation between soil carbon transit times 
and ages

Transit time is the time elapsed since C atoms entered soil until they 
leave via output flux. At steady state, it can be estimated by dividing 
soil C stock over C output. However, it is a big challenge to measure 
C output flux in situ, especially its depth origin. Under the assump-
tion of steady state, C output is equal to input, and transit time can 
be estimated by dividing soil C stock (SOCs) over input, representing 
the mean age of C atoms in efflux (aefflux):

Soil C age is defined as the time a C atom has experienced since 
it entered soil (asoil). It is thus straightforward that we can calculate 
the ratio of aefflux to asoil (ra) as:

Figure S1 shows the data, method, and procedure used to esti-
mate aefflux, asoil, and their relation. Detailed steps are described in 
following sections.

It should be noted that, in order to calculate aefflux, asoil, and there-
fore ra using our data- driven approach at the global scale, steady 
state must be assumed, which is a common practice in large- scale as-
sessments of soil C turnover and persistence (Balesdent et al., 2018; 
Carvalhais et al., 2014; He et al., 2016; Shi et al., 2020). The main rea-
son is that non- steady- state calculations need long- term temporal 
measurements of carbon input and output fluxes at the site level in 
order to quantify temporal dynamics of aefflux and asoil. We admit that 
soil C may not be at the strict steady state because of natural and an-
thropogenic disturbances (e.g., fire and land use change) and climate 
variability, but temporal monitoring of carbon inputs and outputs 
presents a significant measurement challenge, making it difficult, 

(1)aefflux =
SOCs

Input

(2)ra =
aefflux

asoil
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if not impossible, to estimate time- dependent soil carbon ages. 
Nevertheless, a global- scale quantification of the relation between 
aefflux and asoil through soil profiles will be informative to under-
stand the spatial variability of soil carbon turnover and persistence, 
providing a reference and benchmark for assessing whether, how, 
where, and to what extent the soil carbon turnover in different soil 
depths may respond to climate and management changes.

2.2  |  Estimation of carbon input

To estimate aefflux across the globe, we need carbon inputs to soil 
which mainly include BNPP and aboveground NPP (ANPP) trans-
ported down the profile (Clark et al., 2001). We first mapped the 
depth allocation of BNPP in seven soil layer depths (0– 0.2, 0.2– 0.4, 
0.4– 0.6, 0.6– 0.8, 0.8– 1.0, 1.0– 1.5, and 1.5– 2.0 m) down to 2 m to 
represent C inputs. Global maps of BNPP and its depth allocation at 
the resolution of 0.0083° (i.e., ~1 km at the equator) were produced 
using machine learning- based predictive models driven by in situ 
measurements of NPP including its belowground and aboveground 
fractions in 725 soil locations across the globe (Figure S2). A detailed 
description of the datasets and models for digital mapping of BNPP 
can be found in Xiao et al. (2022). In essence, the allocation of BNPP 
to the seven sequential soil layers was estimated according to root 
biomass depth distribution (Figure S2) by assuming that BNPP depth 
allocation is proportional to root biomass distribution in the soil 
profile. To our knowledge, this is the most comprehensive, spatially 
explicit, and depth- resolved estimation of BNPP at a global scale. 
In this study, we further updated the predictive model for mapping 
BNPP across the globe by including MODIS NPP (Zhao et al., 2005) 
as a predictor. By including MODIS NPP, the predictive model could 
explain 63%— additional 8% improvement compared with Xiao 
et al. (2022)— of the variance in observed BNPP (Figure S3a).

Vertical C transport along the soil profile (e.g., via leaching and/
or bioturbation) would contribute to C inputs to a typical layer. Thus, 
input represented by BNPP alone would be a biased estimation of 
C input. We used a partial differential equation to model vertical C 
transport through soil profile (Koven et al., 2013):

where V, SOCs, and z are the amount of transported soil C (kg m−2 year−1), 
total soil C stock (kg m−2), and soil depth (m), respectively; D is the diffu-
sion coefficient constant which is assigned to be 1.0 × 10−4 m2 year−1 in 
accordance with a vertically resolved soil C model (Koven et al., 2013). 
In a typical layer, thus C input was estimated as the sum of BNPP and 
V in that layer. In the first 0– 0.2 m layer, soil C inputs may include 
additional amounts of C from soil surface (Kaiser & Kalbitz, 2012). 
Specifically, we assumed that 10% of ANPP ends up in the topsoil. 
That is, Input0−0.2 = BNPP0−0.2 + V0−0.2 + 0.1 × ANPP. A global map of 
ANPP at the resolution of 1 km was produced using the same machine 
learning- based approach to predict BNPP. The random forest (RF) 

predictive model for ANPP could explain 74% of the variance in ob-
served ANPP (Figure S3b).

2.3  |  Calculation of aefflux and its uncertainty

We calculated layer- specific aefflux as:

where SOCs,i and BNPPi are the soil organic C stock and BNPP in the 
ith soil layer, respectively. For SOCs, we used the WISE30sec database, 
which is a mapping product of global soil C stocks at the same seven 
soil layers and 1 km resolution across global soils (Batjes, 2016). Then, 
in each 1 km pixel across global uplands, aefflux was calculated based on 
the WISE30sec database and the mapping products of BNPPi and Vi.

Prediction uncertainty in Input was brought into the estimation 
of aefflux to quantify the uncertainty in aefflux using a Monte Carlo 
approach by randomly drawing 500 trees with replacement from the 
predictive model (i.e., the RF model) to generate 500 estimates of C 
input (Xiao et al., 2022). The 500 estimates enabled us to obtain 500 
estimates of aefflux for each 1 km pixel. The prediction uncertainty of 
aefflux was estimated as the coefficient of variation (CV) of the 500 
estimates (i.e., dividing their standard deviation by their mean).

In addition, we assessed the sensitivity of aefflux to vertical C 
transport by excluding V from the calculation (i.e., treating BNPP as 
the only soil C input). In each of the seven soil layers, as such, we ob-
tained two sets of aefflux estimates, enabling us to obtain insights into 
the likely aefflux ranges induced by uncertainty in C input estimations 
with and without considering vertical C transport.

2.4  |  Estimation of asoil for each depth interval

A global dataset of ∆14Cdata was obtained up to July 7, 2020 (Lawrence 
et al., 2020). It is an open- source database for the synthesis of soil ra-
diocarbon data using “ISRaD.getdata” function in R package “ISRaD” 
(Lawrence et al., 2020). From this dataset, the column “lyr_14c_fill_
extra” was used because it merges radiocarbon measurements re-
ported as either ∆14C or “fraction of modern” which was subsequently 
converted to ∆14C (personal communication with Dr. Corey Lawrence). 
We focused on ∆14C in mineral soils from 0 to 2 m soil depth with clear 
records of observation year and soil layer depths. In total, we used 
3128 unique measurements of ∆14C from 750 profiles (Figure S2).

We first derived asoil combining the radiocarbon measurements 
with a radiocarbon model, then developed predictive models for asoil, 
and at last extrapolated the model to predict asoil in the same soil 
layer depths to aefflux across the globe to assist comparison. The soil 
radiocarbon model (Cherkinsky & Brovkin, 1993; Trumbore, 2000; 
Vaughn & Torn, 2018) was written as:

(3)V =
�

�z

(

D ×
� SOCs

�z

)

,

(4)aefflux,i =
SOCs,i

Inputi
=

SOCs,i

BNPPi + V
i

(5)Fsoil,t ⋅ Ct = FI,t ⋅ It − Fsoil,t−1 ⋅ Ct−1 ⋅ (1 − k − �),
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where Fsoil,t and FI,t represent the fraction of 14C in measured soil C and 
C input to soil at time t, respectively; Ct and It are the amounts of soil C 
stock and C input to soil at time t; k is the decay rate of soil C; and γ is 
the β- decay rate of 14C and equal to 1/8267 per year. At steady state, 
both It and Ct are constant. That is, Ct = Ct − 1 = It/k, so Equation (5) 
reduces to:

In the ∆14Cdata dataset, however, radiocarbon data were reported 
as ∆14C— the per mille (‰) deviation from a standard of fixed isotopic 
composition, and were transferred to F using following equation:

For ∆14C in C input, it was assumed to be equal to that in the at-
mosphere at time t. Atmospheric ∆14C during the period 1950– 2010 
was extracted from Hua et al. (2013) for the northern and southern 
hemispheres, separately (Figure S4). To utilize soil ∆14C measure-
ments in more recent years, the atmospheric ∆14C data during the 
period 2011– 2019 were extrapolated from the data in the period 
1970– 2010 using an exponential decreasing model (Figure S4). 
These data were used to calculate F for both soil and C input using 
Equation (7). Using the derived F values of C input during the period, 
then, k was iteratively solved. Two possible k solutions could be ob-
tained for several positive large Δ14C values due to the ascending 
and then descending of atmospheric Δ14C during and after the bomb 
test. The small one was used (Shi et al., 2020). Once k was obtained, 
the reciprocal of the decay rate k defines asoil:

Finally, a total of 3128 estimates of asoil in different soil layer 
depths across 750 soil ∆14C profiles were obtained. Here, we note 
that the modeling assumes that the lag time induced by the resi-
dence of assimilated C (including 14C) in living plant material before 
entering soil C pool has negligible effect on the estimation of asoil 
(Trumbore, 2000) and not been modeled.

2.5  |  Digital global mapping of asoil

In order to conduct pixel- to- pixel comparisons with aefflux, we de-
rived maps of asoil at the same resolution of aefflux. Using the geo-
graphical coordinates of ∆14C locations, we retrieved more than 20 
environmental covariates (Table S1) with a variance inflation factor 
value less than 10 as independent predictors to fit a RF model to 
predict asoil. There were 11 soil physiochemical properties obtained 
from ISRIC- WISE database (Batjes, 2016) with a resolution of 1 km, 
and nineteen climatic variables obtained from WorldClim (Fick & 
Hijmans, 2017) with the same resolution as the WISE database. In 
addition, a spatial layer of biome type by aggregating two land cover 
maps [i.e., the MODIS land cover map (Channan et al., 2014) and the 

Terrestrial Ecoregions of the World (Olson et al., 2001)] was gen-
erated to represent nine biome types including tropical/subtropical 
forests, tropical/subtropical grasslands/savannas, temperate forests, 
temperate grasslands, Mediterranean/montane shrublands, boreal 
forests, tundra, deserts, and croplands. We also retrieved soil order 
from the Global Soil Regions Map database (https://www.nrcs.usda.
gov/wps/porta l/nrcs/detai l/soils/ use/?cid=nrcs1 42p2_054013).

Before fitting the RF algorithm, we first converted categorical 
variables (e.g., biome type) to dummy variables, and asoil was natural 
log- transformed. Then, the functions “findCorrelation” and “findLin-
earCombo” in R package “caret” were used to exclude those pre-
dictors with high multicollinearities. The remaining predictors were 
used to fit an RF model using fivefold cross- validation repeated 10 
times in order to target the model with the highest predictive power. 
That is, 80% (randomly selected) of the 750 asoil profiles were used 
for calibration and the remaining 20% profiles for validation. The 
best model hyperparameters were targeted by running the model 
under a series of parameter combinations, the model performance 
was assessed by the rooted mean squared error and determination 
coefficient (R2). Combing with the spatial layers of predictors, the RF 
model was used to predict asoil across the globe at the resolution of 
1 km (most data layers are already at the 1 km resolution as above-
mentioned, for those layers that are not at the target resolution, they 
were resampled to the 1 km resolution). In each 1 km pixel, predic-
tion uncertainty was also quantified as aefflux (i.e., using estimates of 
randomly drawn 500 trees of the fitted RF model to calculate SD and 
mean and thus CV).

2.6  |  The ratio of aefflux to asoil (ra) and its drivers

To obtain insights into the spatial pattern of the relation between 
aefflux and asoil, we conducted a pixel- to- pixel comparison between 
aefflux and asoil by calculating the ratio of aefflux to asoil (ra) in each 1 km 
pixel. Using the 500 estimates of aefflux and asoil in each pixel, we 
obtained 500 estimates of ra which enable us to calculate the SD and 
mean and thus CV (i.e., SD/mean). To determine if ra is significantly 
smaller or larger than 1, we calculated the 95% confidence interval 
(CI) of ra as: mean ± 1.96 × SD. If CI does not overlap with 1, ra is sig-
nificantly different from 1 (type II relation if mean <1, and type III 
relation if mean >1); otherwise, ra is not significantly different from 
1 (i.e., type I relation). Based on the maps of aefflux and asoil, we also 
randomly sampled 10,000 pixels to assess the relationship between 
aefflux and asoil grouped by biome types using a linear regression. This 
enabled us to test how aefflux correlates to asoil and how this correla-
tion varies among biome types.

Focusing on pixel- level mean ra, we further assessed the direct 
and indirect effects of a number of environmental variables on ra 
using a path model (i.e., structural equation model). Four latent 
variables were considered in the path model including climate, soil, 
C input, and topography. To simplify the model and ease interpre-
tation, indicators for latent variable “climate” were selected to be 
mean annual temperature (MAT) and precipitation (MAP), for “soil” 

(6)Fsoil,t = FI,t ⋅ k − Fsoil,t−1 ⋅ (1 − k − �) .

(7)F =
Δ14C

1000
+ 1.

(8)asoil =
1

k
.
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were SOCs and soil order, for “topography” were landform and ele-
vation. MODIS NPP was selected as an indicator for “C input.” We 
considered the following potential paths in a hypothesis- oriented 
path model. First, we hypothesized that all the four latent variables 
have direct effect on ra, aefflux, and asoil; and aefflux and asoil also have 
direct effect on ra. Second, topography indirectly affects ra through 
its effect on climate, C input, soil, aefflux, and asoil. Third, climate in-
directly affects ra through its effect on soil, C input, soil, aefflux, and 
asoil. Fourth, soil indirectly affects ra through its effect on C input, 
aefflux, and asoil. At last, C input indirectly affects ra through its effect 
on aefflux and asoil. The model was fitted to the data from 10,000 
pixels randomly selected across the globe. The partial least squares 
approach was used to fit the path model, and all indicators were 
standardized. The path analyses were performed using the package 
plspm in R 4.1.1 (R Core Team, 2021).

3  |  RESULTS

3.1  |  Global pattern and depth distribution of aefflux 
and asoil

Across the globe, aefflux in the whole 0– 2 m soil profile ranges from 
21 (5% quantile) to 1020 year (95% quantile) with a median and an 
average of 45 and 194 year, respectively, presenting a right- skewed 
distribution (Figure 1a). aefflux is oldest in northern high latitudes 
(Figure 1a) with relatively cold climatic condition. Biome- specific as-
sessment also indicates that aefflux is oldest in two coldest biomes 
(Figure 1b), that is, boreal forests [6032387

52
 year (mean, 5% and 95% 

quantiles)] and tundra (3421431
57

 year). However, the accuracy of aefflux 
estimation in these cold regions is relatively low (Figure 2). For the 
depth distribution of aefflux, global average aefflux is estimated to be 
54

196

11
, 136505

15
, 4311693

25
, 6863522

36
, 12807347

39
, 17989912

88
, and 418026,720

95
 

year in the 0– 0.2, 0.2– 0.4, 0.4– 0.6, 0.6– 0.8, 0.8– 1.0, 1.0– 1.5, and 
1.5– 2.0 m soil depths, respectively, increasing exponentially with 
soil depth (Figure S5). The accuracy of aefflux estimation is reduced 
with increasing soil depth (Figure S6a), suggesting that the quantity 
and quality of deep soil C input will be vital for accurate estimation 
of aefflux. In all seven soil depths, similar spatial pattern of aefflux exists 
as that of the whole 2 m soil profile (Figure S7), and boreal forests 
and tundra consistently have the oldest aefflux (Figure S7; Table S2). 
If vertical C transport is not considered, these estimates are nearly 
doubled (Figure S5; Table S2). Vertical transport redistributes C 
pools with distinct functional properties, which may shape the turn-
over behavior of soil C in a particular layer after receiving C from 
neighboring layers.

Global average asoil in the 2 m soil profile is 14762547
717

 year 
(Figure 1c) and much older than aefflux. Unlike aefflux, large asoil (i.e., 
soil C is old) is not only present in cold regions but also in relatively 
dry areas such as deserts and temperate grasslands (Figure 1d). In 
addition, the global average CV of asoil is 0.25 in the 2 m soil pro-
file, the CV of asoil in seven layers did not show an apparent spa-
tial pattern like aefflux (Figure 2) and is generally smaller than 0.3 

in most areas (Figure 2b). The depth distribution of asoil does not 
follow the same pattern as aefflux and shows a linear increase with 
soil depth (Figure 3a). Averaging across the globe, asoil is estimated 
to be 4741015

131
 , 9501838

413
, 18353290

750
, 28315187

1130
, 37927039

1373
, 50298906

1886
, and 

6614
14,071

2126
 year in the seven soil layers, respectively (Figure S8). In 

all layer depths, asoil is markedly older than aefflux; but this disparity 
is narrowed with increasing soil depth (Figure 3a). In upper layers, 
oldest asoil occurs in northern cold regions; but in deeper layers, asoil 
is also old in relatively dry areas. For example, soil C in tundra is 
oldest in the top 0.2 m soil, but in the 1.5– 2.0 m layer, soil C is old-
est in temperate grasslands (Figure S8). With increasing soil depth, 
unlike aefflux, the accuracy of asoil estimation does not become poor 
(Figure S7). On the contrary, asoil in the upper 0– 0.2 m soil shows the 
largest uncertainty.

3.2  |  Relations between aefflux and asoil

Type II (i.e., ra is significantly smaller than 1), I (ra is not significantly 
different from 1), and III (ra is significantly greater than 1) relations 
occur in 96.4%, 0.4%, and 3.2% of global land areas, respectively 
(Figure 1e). In type I soils, the average ra is 0.080.72

0.02
. Across the globe, 

ra ranges from 0.02 (5% quantile) to 0.72 (95% quantile) with a me-
dian and an average of 0.04 and 0.14, respectively, in the whole 
0– 2 m soil profile (Figure 1f). These results suggest that, in most 
soils, released C is much younger than retained soil C. In terms of the 
accuracy of estimated ra, the CV is relatively large compared with 
the CV of aefflux and asoil (Figure 2c), because the uncertainty in both 
aefflux and asoil is propagated into the estimation of ra. In general, the 
spatial pattern of the CV of ra follows that of aefflux (Figure 2c).

Biomes show significant differences in ra (Figure 1f). Boreal for-
ests and tundra present the largest ra with an average of 0.41.82

0.03
 and 

0.160.66
0.03

, respectively; while deserts present the smallest ra (0.02
0.04

0.01
) 

(Figure 1f). After deserts, the following smallest ra occurs in temper-
ate grasslands (0.0410.065

0.013
) and tropical/subtropical grasslands/savan-

nas (0.0420.066
0.012

; Figure 1f). These results suggest that more relatively 
old soil C contributes to C efflux in cold biomes than in dry biomes. In 
the seven soil depths, global average ra increases exponentially with 
soil depth, and is estimated to be 0.120.36

0.02
, 0.130.52

0.02
, 0.190.98

0.02
, 0.180.86

0.01
, 

0.301.93
0.01

, 0.311.58
0.02

, and 0.782.00
0.01

, respectively (Figure 3a; Figure S8). This 
global average exponential increase of ra with soil depth is mainly 
attributed to the depth distribution of ra in temperate forests, boreal 
forests, and tundra ecosystems (Figure 3b) as ra in other biomes gen-
erally does not show this exponential decreasing pattern (Figure 3b). 
Consistently, boreal forest and tundra soils have the highest ra in all 
soil layers. In deeper layers, ra in a large fraction of boreal forest and 
tundra areas is greater than 1 (Figure S9).

In the whole 0– 2 m soil profile, the relationship between aefflux 
and asoil shows large variability, albeit aefflux is consistently smaller 
than asoil except in some soils in boreal forests and tundra systems 
(Figure 4). Across the globe, aefflux is positively related to asoil (p < .01) 
with 1 year of increase of aefflux per 10 years of increase of asoil 
(i.e., the regression slope between aefflux and asoil is 0.1; Figure 4). 
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5592  |    XIAO et al.

Among biomes, however, the relationship between aefflux and asoil 
changes substantially (Figure 4). In boreal forests, aefflux increases 
by 5 years per 10 years increase of asoil, while it shows insignificant 
relationships with asoil in Mediterranean/montane shrublands and 
croplands. Through the soil profile, the relationship between aefflux 
and asoil is layer- specific (Figure S10). In line with the global spatial 
pattern presented in Figure S8, more aefflux is exceeding asoil with in-
creasing soil depth. In deeper layers, aefflux is even negatively related 
to asoil in some biomes (Figure S11).

3.3  |  Drivers of aefflux, asoil, and ra

The path model considering direct and indirect effects of climate- , to-
pography- , and soil- related variables and NPP on ra can explain 38%, 
66%, and 92% of the variance of aefflux, asoil, and ra in the 0– 2 m soil 
profile, respectively (Figure 5). Overall, the path model can explain 

54% of the variance of the data (i.e., R2 = .54). For aefflux, soil indicated 
by soil organic carbon stock and soil order presents the strongest 
effect (the path coefficient ρ reaches to 0.80). The effects of other 
variables (e.g., climate and NPP) are significant but weak (ρ < 0.1; 
Figure 5). For asoil, NPP shows the strongest effect (ρ = −0.44), fol-
lowed by climate (ρ = −0.22). The importance of climate for asoil is 
further amplified by its indirect effect on asoil via its strong direct ef-
fect on NPP (ρ = 0.80; Figure 5). The ratio of aefflux to asoil (aefflux:asoil) 
is strongly directly influenced by aefflux (ρ = 0.66), soil (ρ = 0.35), and 
asoil (ρ = −0.14; Figure 5). In addition, soil also exerts an indirect ef-
fect on aefflux:asoil via its strong direct effect on aefflux as described 
above. In different soil layer depths, aefflux and soil consistently have 
the strongest effects on aefflux:asoil (Figure S11). These results reveal 
distinct controls over asoil and aefflux. That is, soil properties are pre-
dominant determinants for aefflux, while climate and NPP for asoil. This 
phenomenon is general in different depths through the soil profile 
although the variation of the magnitudes of the effects (Figure S11).

F I G U R E  1  Soil carbon transit times (aefflux), ages (asoil), and their ratios (aefflux:asoil) in the 0– 2 m soil profile across the globe. Left panels  
(a, c, e), global pattern at the resolution of 0.0083°; right panels (b, d, f), the corresponding aggregated values in nine biomes. Violin plots in 
(b, d, f) show the distribution, and boxplots show the median and interquartile range with whiskers extending to 1.5 times of the interquartile 
range. Red dots show biome- specific and global averages. Significant differences of aefflux among biomes are denoted by different letters 
above the boxes (p < .05). See Figures S7– S9 for soil layer- specific estimation of aefflux, asoil, and aefflux:asoil, respectively. [Colour figure can be 
viewed at wileyonlinelibrary.com]
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4  |  DISCUSSION

4.1  |  Fast transit of carbon inputs

Across the globe, our results quantitatively demonstrate that re-
tained soil C on average is nearly eight times older than released soil 
C. This result indicates that most new C inputs leave soil in relatively 
short time (i.e., fast transit), and only a small fraction contributes 
to long- term soil C storage. This may be due to the fact that new C 
substrates entering soil are usually energy- rich and less protected 
by physical stabilization processes (e.g., binding with soil miner-
als), thereby preferentially utilized by and readily accessible to soil 
microorganisms (Dungait et al., 2012; Fontaine et al., 2007; Kleber 
et al., 2015). In the rhizosphere, for example, the majority of new 
and thus young C inputs derived from root exudates may be re-
spired as CO2 by microbes (Finzi et al., 2015) instead of contributing 
to long- term soil C storage. Soil fauna also feeds on new C inputs 
as well as microbes whose growth mainly attribute to utilization of 
new C (Osler & Sommerkorn, 2007; van den Hoogen et al., 2019). In 

addition, younger C substrates are more vulnerable to loss via physi-
cal transportation processes such as leaching due to their relatively 
large size (small specific surface area) thereby weak bonding with 
soil minerals (Hedges & Keil, 1999). As soil C efflux is dominated by 
relatively younger C, the observed changes in soil C efflux under 
changing climatic conditions (e.g., warming) would be mainly attrib-
uted to young C, masking the response of old C. We need innovative 
approaches to explicitly separate the responses of C pools with dif-
ferent ages (e.g., C isotope tracing) in order to reliably predict long- 
term soil C dynamics in response to carbon input changes.

4.2  |  Limited contribution of additional carbon 
inputs to long- term soil carbon storage

The relatively faster transit times compared with the age of C 
retained in soil may help explain why additional C inputs do not 
always benefit soil C accumulation observed in a number of field 
experiments (Jiang et al., 2020; Kuzyakov et al., 2019). Under 

F I G U R E  2  Uncertainties in estimated 
soil carbon transit times [aefflux, (a)], ages 
[asoil, (b)], and their ratios [aefflux:asoil, 
(c)] in the 0– 2 m soil profile across the 
globe. The uncertainty is quantified as 
the coefficient of variance (CV) of 500 
estimates (i.e., 500 trees in the random 
forest models for predicting aefflux and 
asoil) in each pixel. [Colour figure can be 
viewed at wileyonlinelibrary.com]
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F I G U R E  3  Depth distribution of soil carbon transit times (aefflux), ages (asoil), and their ratios (aefflux:asoil). (a) Depth pattern of global 
average aefflux, asoil, and aefflux:asoil (inset); (b) depth pattern of average aefflux:asoil (ra) among biome types. Lines are regression lines. [Colour 
figure can be viewed at wileyonlinelibrary.com]

F I G U R E  4  The relationship between 
soil carbon transit times (aefflux) and ages 
(asoil) in the 0– 2 m soil profile in randomly 
sampled 10,000 pixels across the globe. 
Colored lines show the regression line 
for nine biome types, and the black line 
shows the regression line for all data 
points. Dashed line shows the 1:1 line. 
Values in the parentheses of figure legend 
are the regression slope with **p < .01. 
See Figure S10 for soil layer- specific 
results. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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elevated atmospheric CO2, field manipulation experiments have 
found enhanced photosynthetic C assimilation and thus stimulated 
C inputs to soil, but soil C stock shows no or marginal response to 
such enhanced belowground C inputs and remains relatively sta-
ble (Jiang et al., 2020, Kuzyakov et al., 2019). The reason for this 
imbalance is widely debated. One explanation proposed is that mi-
crobial decomposition is accelerated as microbes mine nutrients 
from soil organic matter in order to utilize the enhanced input of 
newly assimilated C, particularly in nutrient- poor environments. 
But this cannot explain that plants also need additional nutrients 
to support their stimulated growth if plants do not significant 
increase nutrient use efficiency (Terrer et al., 2019). Our results 
shed light on another mechanism, that is, only a small fraction of 
additional C inputs contribute to long- term soil C storage and the 
remaining majority has left the system in a relatively short time 
via rapid loss pathways such as rhizosphere microbial respira-
tion (Haichar et al., 2014) and leaching (Nakhavali et al., 2021). 
Consistent with this mechanism, a recent study of a mature forest 
under elevated CO2 indeed found that half of the extra C fixed 
under elevated CO2 was quickly released through soil respiration 
and another fraction was transported out via leaching, resulting in 
neutral soil C accumulation (Jiang et al., 2020). Our results indicate 
that it may be general across the globe that rapid cycling of new C 

inputs weakens the efficiency of additional C inputs for long- term 
soil C storage.

4.3  |  Controls over whole- profile soil carbon 
turnover and persistence

Our results reveal that the ratio of released to retained soil C ages 
(i.e., ra) shows significant difference among biome types. Particularly, 
in colder biomes (e.g., boreal forests and tundra), more old soil C con-
tributes to soil C efflux (i.e., ra > 1), particularly in deeper soil layers. A 
series of processes may result in such protection of young soil C such 
as permafrost, lower oxygen availability, and stronger organo- mineral 
interactions in deeper soil depths (Dungait et al., 2012; Fontaine 
et al., 2007; Kleber et al., 2015). This may have significant implica-
tions for soil C balance changes in cold biomes under climate change. 
In these systems, there are more C in deeper layers, this may further 
amplify the response of soil C in these colder systems to global warm-
ing. Field warming experiments conducted in tundra systems have 
found that old C in deep layers is also sensitive to warming (Pries 
et al., 2016; Schuur et al., 2009; Sistla et al., 2013), which may due to 
that thermal limitation of soil C decomposition in deep soils is impor-
tant for long- term soil C persistence in permafrost regions.

F I G U R E  5  Drivers of soil carbon transit times (aefflux), ages (asoil), and their ratios (aefflux:asoil) in the 0– 2 m soil profile. Numbers show 
the path coefficients (ρ) of a path analysis to detect direct and indirect effects of the variables. Arrows indicate effect direction, while red 
and blue paths indicate the effect is negative and positive, respectively. Insignificant paths are not shown. Indicators of the relevant latent 
variable (i.e., landform and elevation for topography, mean annual temperature and precipitation for climate, soil organic carbon stock and 
order for soil) are shown in the same box as blue color text. NPP, net primary productivity. R2 in the box shows the determinant coefficient 
for the corresponding variable in the same box, while R2 outside the circle panel shows the determinant coefficient for the whole path 
model. See Figure S10 for soil layer- specific results. [Colour figure can be viewed at wileyonlinelibrary.com]
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It is intriguing to note that asoil is strongly negatively associated 
with climate (which is represented by MAT and MAP) and NPP (which 
is also strongly affected by climate), but the association of aefflux with 
these factors is much weaker. On the contrary, soil (which is repre-
sented by SOCs and soil order) has strong effect on aefflux, but its 
effect on asoil is much weaker. This phenomenon is general in all soil 
layer depths. These results provide insights into mechanisms under-
pinning different soil C turnover processes. That is, the importance 
of climate may mainly attribute to its direct and indirect effects on 
soil C persistence reflected by asoil, while soil properties on soil C 
decomposition reflected by aefflux. Shi et al. (2020) had also found 
that climate is the major control of soil Δ14C thereby soil carbon age. 
Another study focusing on soil carbon turnover time (which is equiv-
alent to aefflux in this study) in the 0.3– 1 m soil found that soil proper-
ties are more important than climate (Luo et al., 2019). It is likely that 
final soil C storage is the combined and integrated consequences of 
the two processes. Indeed, a previous study has demonstrated that 
climatic and soil properties show similar importance for controlling 
the global spatial pattern of soil C storage (Luo et al., 2021). In terms 
of global spatial pattern of aefflux and asoil, we also found that higher 
aefflux mainly occurs in northern high latitudes (Figure 1a), but large 
asoil values gather not only in cold regions but also in relatively dry 
areas such as deserts and temperate grasslands (Figure 1d). These 
results further indicate a distinct role of thermal and moisture re-
gimes in influencing aefflux and asoil, which may have significant conse-
quences on long- term soil C dynamics in response to climate change.

4.4  |  Limitations and future research

To quantify the relation between aefflux and asoil across the globe and 
through soil profile at different depths using our data- driven ap-
proach, soil carbon had to be assumed to be at the steady state (i.e., 
input = output). A key reason is the lack of relevant temporal data 
at the point level. Field carbon outfluxes derived from new carbon 
inputs are difficult to be separated from total soil carbon outfluxes, 
which are a mix of autotrophic and heterotrophic respiration with 
different depth origin. Especially, partitioning outfluxes to different 
soil depths where CO2 is produced is a grand challenge. Within a 
modeling context (e.g., using an Earth system model), non- steady- 
state simulations could be conducted using carbon inputs and out-
puts for the entire simulation period to account for climate and land 
use changes, but the model would have to make some extra strong 
assumptions on a series of land surface processes (e.g., land use his-
tory, plant growth and carbon partitioning, and heterogeneous soil 
biogeochemical processes). Despite this limitation, considering the 
large difference between asoil and aefflux (Figure 1c,d), a little bias in 
aefflux and/or asoil estimation induced by the steady- state assumption 
would not invalidate the general relation of asoil > aefflux found here. 
Indeed, a modeling study using the Earth system model– ORCHIDEE, 
which explicitly takes into account climate and land use changes 
in the period 1860– 2010 (process- based models would be the 
only approach available for such purpose), had demonstrated that 

steady- state assumption only results in a subtle change of global 
 average soil C turnover time (i.e., aefflux in our study) of 9 years (Wu 
et al., 2020). Similarly, Lu et al. (2018) found that the steady- state 
assumption leads to overestimations of aefflux of about 3 years in the 
model CABLE. Together, these modeling studies suggest that the 
range of uncertainty due to the assumption of steady state in our 
quantification of aefflux and asoil may be relatively low.

Earth system models usually have a litter or labile C pool with rel-
atively fast decay rates (Metzler & Sierra, 2018), which to some extent 
captures the rapid C losses of new entering C. However, the size and 
decay rate of this pool have been rarely explicitly tested or verified. 
The spatially explicit maps for aefflux and asoil provide benchmark global 
layers to force and verify these models and explore the relevant impli-
cations for long- term C dynamics. The result of most soils with a aefflux-

:asoil not being equal to 1 demonstrates the need of partitioning soil 
carbon into different fractions with distinct turnover behaviors and 
persistence [e.g., particulate organic matter and mineral- associated 
organic matter as suggested by Lavallee et al. (2020)] when modeling 
soil C dynamics using models based on first- order kinetics. That is, the 
composition of soil carbon is generally heterogeneous and different 
fractions of soil C can decay with distinct rates. In this study, however, 
we only estimated mean transit time and age of soil C. If the age struc-
ture or distribution underpinning such mean values could be specified, 
it will be especially useful for initializing and parameterizing the sizes 
and decay rates of C pools in pool- based models. In addition, it should 
be highlighted that both aefflux and asoil exhibit particular vertical gradi-
ents. The underlying processes and controls of these gradients should 
be further studied, which are probably much more complex than the 
temperature and moisture modifiers included in most models.

We noticed that the uncertainty of aefflux estimation (which is 
quantified as the CV of estimates of 500 RF trees in each 0.0083° 
grid) in cold regions is relatively large (Figure 2). This may be largely 
due to cryoturbation- induced redistribution of soil C in permafrost- 
affected regions (Mishra et al., 2021), which might not be well repre-
sented by the process of vertical transport considered in this study. 
Soil profile C redistribution may play an important role in regulating 
aefflux (Luo et al., 2020). Indeed, our sensitivity analysis suggests that 
global average aefflux is increased by 72% (from 194 to 334 year) if 
vertical transport is not considered (Figure S5). Vertical transport 
of soil C through soil profile has been recognized as a critical pro-
cess regulating whole- profile C dynamics (Bruun et al., 2007; Guidi 
et al., 2022; Kaiser & Kalbitz, 2012; Rumpel & Kögel- Knabner, 2010). 
Yet, few studies have explored the detailed role of vertically trans-
ported soil C in controlling whole- profile soil C dynamics, especially 
across large extents (Luo et al., 2020). Our results imply that verti-
cal transport of soil C would be generally important in controlling 
whole- profile SOC dynamics, and should be explicitly considered.

5  |  CONCLUSIONS

Using a data- driven approach combining global observational 
datasets, we have quantified the relation between soil carbon 
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transit times (aefflux) and ages (asoil) across soil depths at a global 
scale. To our knowledge, we are the first to do so. The results 
verify that, in most soils across the globe, aefflux is much smaller 
than asoil as predicted by soil C models (Manzoni et al., 2009; 
Sierra et al., 2018). That is, most new C inputs transit fast and 
leave soil in relatively short time, suggesting that only a very 
small fraction of C inputs contributes to long- term soil C storage. 
Our results provide additional insights into the vertical gradi-
ent of the relation between aefflux and asoil. The significant in-
crease of aefflux with soil depth suggests that increasing C inputs 
to deeper soil layers would be more efficient for long- term C 
sequestration. While, in upper layers, practices that promote the 
stabilization of new C inputs would be preferred. For example, 
there is evidence that the application of biochar enhances soil 
C accumulation as biochar can stabilize new entering C by for-
matting microaggregates via organo- mineral interactions (Weng 
et al., 2017). In addition, we have noticed that the role of the 
vertical C transport has been rarely tested, albeit it has been 
acknowledged in some modeling frameworks (Koven et al., 2013; 
Luo et al., 2020). This knowledge gap may be a key uncertainty 
source in predictions of whole- soil C dynamics. Overall, we sug-
gest that relatively rapid release of young C in upper soil layers 
that hold most soil C stocks must be properly considered for re-
liable soil C predictions and land management to simulate long- 
term C sequestration.
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