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A B S T R A C T   

Through soil profile, both chemical composition of soil organic carbon (SOC) and edaphic physiochemical 
properties present a vertical gradient, likely resulting in depth-specific SOC dynamics in response to climate 
change (e.g., global warming). We assessed temperature sensitivity of SOC decomposition (Q10) by incubating 
(128 days) soils sampled across five sequential layer depths (i.e., 0–10, 10–20, 20–30, 30–50, and 50–100 cm) at 
ten sites along a ~2500 m elevational transect (from ~2100 m to ~4600 m) covering various vegetation types 
(from evergreen broadleaved forest to alpine meadow) in southeast Tibet, China. The Q10 of SOC decomposition 
was significantly affected by both soil depth and elevation. However, depth-induced variation of Q10 was much 
smaller than that induced by the elevation gradient. Across the ten sites and five soil depths, chemical compo
sition of SOC and its physiochemical protection against decomposition contributed >80% to the explained 
variance of Q10 values. Path analysis suggested that climate indirectly affected Q10 via its regulation on chemical 
composition of SOC and their physiochemical stabilization. The results from a carbon model constrained by the 
collected data further revealed that fast, slow and passive SOC pools exhibited significant difference in their Q10, 
resulted from different involvement of chemical composition and physicochemical protection in their decom
position. Our findings demonstrate similar temperature sensitivity of SOC decomposition across soil depths, but 
spatially heterogeneous temperature sensitivity due to climate-induced variability of both chemical recalcitrance 
of SOC and its physiochemical protection against decomposition.   

1. Introduction 

The fate of soil organic carbon (SOC) under climate warming is a 
vital determinant of carbon cycle-climate feedbacks. Kinetic theory 
suggests that temperature sensitivity of the decomposition of an organic- 
carbon substrate is a function of its molecular structure (i.e., intrinsic 
temperature sensitivity) (Davidson and Janssens, 2006). More complex 
molecules usually have higher activation energy and, hence, higher 
intrinsic temperature sensitivity. However, physical or chemical 

protection (e.g., binding with soil minerals and occlusion in soil aggre
gates), together with various environmental constraints, can dampen or 
obscure the intrinsic temperature sensitivity by reducing substrate 
availability (Dungait et al., 2012). This complexity would be a key 
reason for large prediction uncertainties in SOC dynamics by Earth 
system models which usually predict the temperature sensitivity of SOC 
decomposition based on relatively simple temperature response func
tions (e.g., Q10 or Arrhenius functions) due to our poor understanding of 
underlying mechanisms (Jackson et al., 2017; Xu et al., 2021). We need 
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to elucidate and disentangle the specific role of molecular structure, 
physiochemical protection and their interactions with environmental 
conditions in regulating the temperature sensitivity of SOC 
decomposition. 

A number of studies have been conducted to assess the temperature 
sensitivity of SOC decomposition and underlying mechanisms in 
different ecosystems (Jackson et al., 2017; Xu et al., 2021). However, 
temperature sensitivity of SOC decomposition greatly vary not only 
across space and over time but also through soil depths. The majority of 
SOC stores in subsoil below 0.3 m (Jobbagy and Jackson, 2000; Li et al., 
2020), which has been found to show similar temperature sensitivity as 
topsoil SOC (Hicks Pries et al., 2017). Hence, depth-resolved assessment 
is growing due to rising concern of subsoil SOC loss under warming (Li 
et al., 2018, 2020; Qin et al., 2019; Vaughn and Torn, 2019). A 
short-term incubation experiment (21 h) using soil samples down to 1 m 
from 90 upland forests in China suggested that SOC in deeper layers is 
more sensitive to temperature (Li et al., 2020). They further found that 
climate is consistently the dominant regulator of the variability of the 
temperature sensitivity across the sites in all soil depths, while chemical 
recalcitrance (which is indicated by the ratio of carbohydrates to aro
matics) also plays an important regulating role in deeper layers. On the 
contrary, a long-term incubation (330 days) of permafrost soils from 
Tibet, China, found weaker temperature sensitivity of SOC in deeper 
layers due to stronger aggregate protection and lower microbial activity 
(Qin et al., 2019). Using radiocarbon signals to divide mineralized car
bon (i.e., CO2) into that derived from young (decades in terms of carbon 
age) and old SOC (millennia), Vaughn and Torn (2019) revealed that 
SOC in different depths with distinct ages responds similarly to warming 
(i.e., equal temperature sensitivity to warming) and suggested that 
chemical recalcitrance of SOC might be secondary for the temperature 
sensitivity of SOC mineralization. Overall, controlling factors under
pinning the variable temperature sensitivities of SOC decomposition 
across soil depths need to be further elucidated to improve our under
standing of temperature sensitivity of whole-profile SOC decomposition. 

Soil organic carbon is comprised of numerous compounds that have 
distinct turnover behaviors and persistence. A potential solution to 
reduce uncertainties in our understanding of how SOC responds to 
temperature would be to align temperature responses with diverse and 
functionally distinct carbon compounds. Particulate (POC) and mineral- 
associated organic carbon (MOC) are two such functionally contrasting 
pools reflecting both molecular structure and physiochemical protection 
(Lavallee et al., 2020). Large-scale studies have demonstrated that the 
two pools show distinct accumulation and turnover behaviors (Cotrufo 
et al., 2019; Luo et al., 2020). However, POC and MOC are primarily 
distinguished by particle size. Given the complexity of SOC composition, 
direct information of molecular characteristics may add another layer of 
information for understanding SOC temperature sensitivity. Indeed, a 
continental scale assessment of molecular composition of SOC revealed 
that environmentally and geochemically associated trade-offs in soil 
carbon molecular composition could well explain the spatial variability 
of SOC storage (Hall et al., 2020). Integrating information of various 
SOC pools with processes involved in physiochemical protection of SOC 
may shed new lights on mechanistic understanding of the temperature 
sensitivity of SOC decomposition (Davidson and Janssens, 2006). This is 
particularly relevant to depth-resolved prediction of SOC dynamics as 
both physiochemical protection and molecular structure of organic 
carbon substrates may present a gradient through soil profile (Qin et al., 
2019). 

The Tibet Plateau, also called the world’s “third pole”, stores a large 
amount of SOC (27.75 Pg in the top 1 m soil) (Wang et al., 2021) which 
has been predicted to be very sensitive and vulnerable to climate 
warming (Guan et al., 2018; Pei et al., 2022). In addition, the moun
tainous environment of this region leads to heterogenous edaphic 
properties, distinct climatic conditions, and diverse vegetation covers 
(Xu et al., 2021), providing a good opportunity to explore the spatial 
variability of depth-resolved temperature sensitivity of SOC 

decomposition. In this study, we collected soil samples from five 
sequential soil layer depths (i.e., 0–10, 10–20, 20–30, 30–50 and 
50–100 cm) at ten sites across an elevational gradient ranging from 
~2100 m to ~4600 m in southeast Tibet. These sites cover diverse of 
climate, vegetation types (from evergreen broadleaved forest to alpine 
meadow) and soil conditions. Together with measurements of a suite of 
chemical and physical pools of SOC, laboratory soil incubation (128 
days) and pool-based modelling, we aim to evaluate the temperature 
sensitivity of total SOC decomposition as well as different carbon pools 
distinguished by turnover rates, and distinguish the specific regulating 
role of chemical composition and physiochemical protection in the 
variability of Q10 across elevations and soil depths. 

2. Materials and methods 

2.1. Study sites and soil sampling 

We selected an elevational transect in southeastern Tibet to sample 
soils. The elevation of the transect ranges from ~2100 m to ~4600 with 
a mean annual temperature (MAT) ranging from − 0.27 to 11.04 ◦C and 
mean annual precipitation (MAP) ranging from 624 to 888 mm. This 
transect locates in a remote area in Tibet and keeps natural landscape 
with few human activities. The soils collected from elevations of 4600 
m–4300 m, 4300 m–4000 m, 4000 m–3400 m, and 3400 m–2100 m 
belong to Matti-Gelic Cambisol, Albic Umbri-Gelic Cambisol, Dystric 
Podzoluvisol and Eutric Cambisol, respectively (Li et al., 2014; Xu et al., 
2021). A brief introduction of the study sites and basic soil properties 
have been presented in Table 1. 

In September 2020, we took soil cores down to 1 m with five depth 
intervals (i.e., 0–10, 10–20, 20–30, 30–50, and 50–100 cm) from ten 
sites along the transect (Table 1) using a combined gradient and repli
cated sampling design (Kreyling et al., 2018). Among the ten sites, we 
set up three 10 × 10 m sampling quadrats (as three replicates) 
approximately 100 m apart at the elevations of 2100, 2762, 3448, 4090 
and 4559 m. At other elevations (i.e., 2326, 3078, 3611, 4308 and 4369 
m), we only set up one 10 × 10 m sampling quadrat. At each quadrat, 
five randomized soil profiles were collected and subsequently mixed to 
get one composite sample by depth. This design allows us to cover more 
gradients, particularly considering the laborious challenge at high alti
tudes. Soil samples were stored in airtight polypropylene bags and 
placed in a cooler filled with ice-cubes during transportation to the 
laboratory. After transporting to laboratory, the soil samples were sieved 
to 2 mm to remove stones and visible roots. Then, the composite sample 
was divided into two subsamples in laboratory: one air-dried for 
determining soil physicochemical properties, and the other temporarily 
stored at 4 ◦C for later laboratory respiration incubation and measure
ments of microbial biomass carbon and dissolved organic carbon within 
two weeks. Using the samples, we measured a series of variables relating 
to edaphic properties, chemical composition and physical protection of 
SOC (Table 2). 

2.2. Soil temperature 

Soil temperature at each soil depth at the ten sampling sites were 
automatically monitored and recorded every 4 h for one year, by placing 
data loggers (iButton; model DS 1921G, Dallas Semiconductor, TX, USA) 
to the middle of each of the five soil layer depths at the time of soil 
sampling (September 2020). iButtons were retrieved in October 2021 to 
download temperature records which were used to calculate annual 
mean soil temperature (SoilT), mean temperature in the warmest month 
(August, SoilTw), and mean temperature in the coldest month 
(February, SoilTc; Table 2). 

2.3. Edaphic properties and SOC compounds 

We determined the following edaphic variables using standard 

X. Mao et al.                                                                                                                                                                                                                                     



Soil Biology and Biochemistry 172 (2022) 108743

3

methods: SOC, total nitrogen (TN), inorganic N (NO3
− -N and NH4

+-N), 
total phosphorus (TP), available phosphorus (AP), soil pH, texture, Fe 
and Al oxides, moisture content and soil bulk density (BD). Using the air- 
dried samples, SOC and soil TN were analyzed with an elemental 
analyzer (Elementar Vario EL Cube, Germany) after treating with HCl to 
remove carbonate. Soil NH4

+-N, NO3
− -N and AP were analyzed by an UV 

spectrophotometer (Shimadzu, UV-2450, Japan). Soil pH was measured 
using deionized water in a 1:2.5 (w: v) soil-water suspension with a pH 
electrode (Mettler-Toledo, Switzerland). Soil texture was determined 
using a laser particle size analyzer (LS-CWM, OMEC, China) after full 
dispersion of the sample with HCl and then H2O2 to remove carbonate 
and organic matter. The free oxides (i.e., Fed, Ald) and amorphous ox
ides (Feo, Alo) were extracted with dithionite-citrate-bicarbonate solu
tion and ammonium-oxalate solution, respectively, and then digested 
with H2SO4 and H2O2. Fe and Al concentrations in digested solutions 
were analyzed by inductively coupled plasma optical emission spec
troscopy (Optima, 2000, PerkinElmer Co., USA). Soil moisture was 
determined by drying fresh soil samples in an oven at 105 ◦C until 
constant weight obtained and dry weight of the sample recorded. The 
core ring sampler (5 cm diameter, 100 cm3 volume) was dried at 105 ◦C 
for 48 h, then weighed and corrected for gravels (>2 mm) for BD 
determination. The SOC stock (SOCs) was then calculated as: 

SOCs = SOC × BD × D ×

(

1 −
Gr
100

)

, (1)  

where SOC, BD, Gr and D denote the SOC concentration (g kg− 1), bulk 
density (g cm3) of the fine earth fraction < 2 mm, volume percentage of 
gravel (%) and thickness (cm) of each soil horizon. 

Dissolved organic carbon (DOC) was extracted with deionized water 
at a ratio of 1:2.5, shaken for 30 min and then filtered through a 0.45 μm 
membrane. Soil microbial biomass carbon (MBC) was determined after 
the chloroform fumigation-extraction. Specifically, 5 g fresh soil was 
fumigated with chloroform for 24 h and another 5 g soil kept non- 
fumigated. Both the fumigated and non-fumigated soil samples were 
extracted with 20 mL 0.5 M K2SO4, shaken for 30 min and then filtered 
through a 0.45 μm membrane. MBC content was calculated as the dif
ference between organic carbon in fumigated and unfumigated samples, 
corrected using a conversion factor of 0.45 for unrecovered biomass 
(Vance et al., 1987). By drawing standard curves, the filtrates above 
were all analyzed for organic carbon using a TOC analyzer (Multi N/C 

3100, Germany). 
To determine the relative contribution of MOC versus POC fraction 

to total SOC, all soil samples were fractionated by size (0.053 mm) after 
full soil dispersion (Six et al., 1998). Briefly, air-dried soils were sieved 
to 2 mm, and 5 g soil was shaken in dilute (0.5%) sodium hexameta
phosphate and beads for 18 h to completely disperse the soil. The 
dispersed soil was then rinsed onto a 0.053 mm sieve and the fraction 
passing through (<0.053 mm) was collected as MOC; the fraction 
remaining on the sieve was collected as POC. After drying to constant 
weight in a 60 ◦C oven, each fraction was analyzed for carbon concen
tration in an elemental analyzer (Elementar Vario EL Cube, Germany). 
Standard reference soil (Certified reference material, GBW07448) was 
measured at the interval of every 50 samples for sample calibration. A 
few of the measured soils contained inorganic carbon, which was 
removed from the sample by treated with diluted HCl before elemental 
analyses. 

Soil aggregates were separated into two fractions (2–0.25 mm and 
<0.25 mm) by wet sieving (Six et al., 1998). Briefly, 10 g fresh soils 
(passed through 2 mm sieve) were placed on the top of 0.25 mm sieve, 
immersed in water-filled container for 5 min and then were gently 
oscillated for 20 min (4 cm amplitude, 25 cycles min− 1). The soils both 
remained on 0.25 mm sieve and passed through 0.25 mm were collected 
and freeze-dried. Organic carbon content of 2–0.25 mm aggregates was 
measured using an elemental analyzer (Elementar Vario EL Cube, Ger
many). The soil samples were treated with diluted HCl to remove the 
inorganic carbon prior to the determination. The proportion of organic 
carbon in 2–0.25 mm aggregates to bulk SOC was used to reflect SOC in 
macroaggregates. 

After the reduction treatment of air-dried soils with a dithionite- 
citrate-bicarbonate solution, the residues were rinsed with deionized 
water for three times, freeze-dried, and then analyzed for SOC content 
with an elemental analyzer (Elementar Vario EL Cube, Germany) after 
treating with HCl. As a control treatment, soil samples were extracted 
with sodium chloride (NaCl). The oxides-bonded SOC content was 
calculated by subtracting SOC in control treatment from SOC in reduc
tion treatment. The proportion of oxides-bonded SOC to bulk SOC was 
used to reflect SOC protected by soil oxides. 

The chemical compositions of SOC were determined via cross po
larization magic angle spinning solid-state 13C-CPMAS NMR spectros
copy (Bruker Avance 300 spectrometer, Germany). Before analysis, air- 

Table 1 
Soil sampling sites and soil properties in the top 10 cm soil.  

Vegetation Elevation (m, a. 
s.l.) 

Coordinates MAT 
(oC) 

MAP 
(mm) 

Dominant species SOC (g kg− 1 

soil) 
TN (g kg− 1 

soil) 
pH Silt + Clay 

(%) 

Alpine meadow 4559 94◦39′8′′E − 0.28 624 Polygonum 
macrophyllum 

69.67 ±
10.37 

5.34 ±
0.61 

5.01 ±
0.02 

50.39 ±
4.51 

29◦36′41′′N Potentilla peduncularis 
Alpine bush 4369 94◦43′5′′E 0.62 631 Rhododendron bulu 57.70 4.27 4.92 53.70 

29◦34′6′′N Potentilla fruticosa 
Alpine shrub 4308 94◦43′36′′E 1.63 637 Rhododendron 

aganniphum 
88.60 3.62 4.64 52.54 

29◦35′14′′N 
Evergreen coniferous forest 4090 94◦43′30′′E 2.67 645 Abies georgei 65.00 ±

1.03 
3.66 ±
0.16 

4.75 ±
0.17 

56.10 ±
1.46 29◦35′37′′N Rosa omeiensis 

3611 94◦43′52′′E 4.41 661 Abies georgei 64.90 3.70 4.72 52.06 
29◦36′34′′N Sorbus rehderiana 

Evergreen broadleaved- 
coniferous mixed forest 

3448 94◦44′15′′E 5.83 666 Picea likiangensis 79.17 ±
19.82 

4.60 ±
0.98 

4.90 ±
0.14 

64.47 ±
5.77 29◦46′20′′N Quercus aquifolioides 

3078 95◦43′27′′E 6.30 777 Picea likiangensis 60.10 3.88 5.47 55.30 
29◦50′38′′N Betula utilis 

Evergreen coniferous forest 2762 95◦43′58′′E 8.03 845 Pinus armandii 56.60 ±
0.15 

2.51 ±
0.18 

5.54 ±
0.23 

53.59 ±
4.07 29◦52′27′′N Rosa sericea 

Evergreen broadleaved- 
coniferous mixed forest 

2326 95◦5′53′′E 10.89 868 Pinus armandii 54.80 3.77 5.77 51.24 
30◦6′16′′N Alnus nepalensis 

Evergreen coniferous forest 2070 95◦1′40′′E 11.04 888 Alnus nepalensis 17.03 ±
2.83 

1.01 ±
0.05 

8.49 ±
0.18 

25.62 ±
0.17 30◦7′43′′N 

Note: A gradient sampling design was adopted to cover more elevations (Kreyling et al., 2018). Values for soil properties at elevations of 4559, 4090, 3448, 2762, 2070 
m are given as mean ± standard error (n = 3), at other elevations only is the value for one composite sample given. 
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dried soil samples were treated with 10% HF (v/v) to remove para
magnetic materials. The treated samples were washed with deionized 
water, freeze-dried, and then sieved to pass a 0.149 mm screen. A semi- 
quantitative estimation of the main organic carbon functional groups 
was obtained by integrating four major chemical shift regions and the 
relative content of the different organic carbon functional groups were 
calculated as percentages of the area to the total spectrum area. The 
recorded 13C spectra were quantified in the following chemical shift 
regions: alkyl C (0–45 ppm), O-alkyl C (45–110 ppm), aromatic C 
(110–160 ppm), and carbonyl/carboxyl C (160–220 ppm). O-alkyl C 
was separated into 45–60 ppm (methoxyl C), 60–90 ppm (C2–C6 car
bohydrates) and 90–110 ppm (anomeric C). Aromatic C was divided into 
110–145 ppm (aryl C) and 145–160 ppm (phenolic C). Three indexes 
were further calculated to reflect chemical recalcitrance of SOC (Li et al., 
2017): 

ACOC=
alkyl C (0-45 ppm)

O-alkyl C (60-110 ppm)
(2)  

HBHI=
Hydrophobic C (0-45 ppm+ 110-160 ppm)
Hydrophilic C (60-110 ppm+ 160-220 ppm)

(3)  

PolyC= 1.2 × (O-alkyl C − phenolic C× 1.5) (4)  

2.4. Soil incubation and estimation of Q10 

Soil samples (20 g fresh weight) were placed in 150-ml polyethylene 
plastic incubation bottles, which are designed for the automatic sam
pling and analysis system (Liu et al., 2017). After two weeks of 
pre-incubation at 20 ◦C to activate microorganisms and minimize the 
pulse effect, soils were incubated at designated temperatures of 5 and 
15 ◦C with three replicates for a period of 128 days. During incubation, 
the bottles were sealed with caps that had small holes for ventilation and 
to reduce water loss, and soil moisture in all bottles was maintained at 
60% of water-holding capacity by repeatedly weighing and adjusting 
water. The mineralization rate of SOC (Rs) was measured 13 times using 
an automatic temperature control soil flux system (PRI-8800; Pri-Eco, 
Beijing, China) as described in He et al. (2013). We calculated Rs for 
day 1, 2, 4, 6, 9, 16, 23, 37, 51, 65, 86, 107 and 128 of the incubation. 
The system samples and measures Rs at programmed time intervals 
automatically. On each measurement date, daily Rs (μg CO2–C g− 1 SOC 
day− 1) were normalized to per unit SOC. The cumulative carbon 
mineralization (Rcum, μg CO2–C g− 1 SOC) during the incubation period 
was linearly interpolated using Rs. Based on Rcum at the end of the in
cubation, we calculated Q10 (Q10-cum) as: 

Q10− cum =

(
Rw

Rc

) 10
Tw − Tc

, (5)  

where Rw and Rc are the cumulative mineralization of SOC (μg CO2–C 
g− 1 SOC) under warm (Tw, i.e., 15 ◦C) and cold (Tc, i.e., 5 ◦C) temper
atures, respectively. 

In addition, Q10 values for different cumulative respired fractions of 
SOC decomposition were calculated using Q10-q method (Conant et al., 
2008). Q10 based on this fraction was estimated as: 

Q10− q =

(
tc
tw

) 10
Tw − Tc

, (6)  

where tc and tw are the time needed to respire a given fraction of SOC at 
Tc and Tw, respectively. Considering the continuum nature of SOC 
lability, the fraction of respired SOC was determined at continuous 
gradients with an interval of percentage respired SOC of 0.1% (i.e., 
0–0.1%, 0.1–0.2%, 0.2–0.3%, …, which represent a gradient of 
decreasing lability of SOC with the decomposition of SOC acknowl
edging that labile fractions decompose fast). For all incubated soils, we 
calculated Q10-q for all respired fractions at the interval of 0.1%. 
Depending on the incubation temperature and soil sample, the 
maximum respired fraction ranges from 0.3% to 1.3%. 

2.5. Modelling carbon pools and their Q10 

Using measurements of Rs, we fitted a three-pool model to derive Q10 
for each pool: 

Rt = kf ⋅Cf ⋅e− kf ⋅t + ks⋅Cs⋅e− ks ⋅t + kp⋅Cp⋅e− kp ⋅t, (7)  

where Cf = ff ⋅C0, Cs = fs⋅C0, Cp = fp⋅C0, ff + fs + fp = 1, Rt is the SOC 
mineralization rate at day t (μg CO2–C g− 1 SOC day− 1); ff, fs and fp are 
the fraction of fast, slow (Cs) and passive pool (Cp) in total SOC at the 
start of the incubation (C0), respectively, with decay rate of kf, ks and kp 
(day− 1), respectively. In this study, we designed a new model config
uring procedure considering the relatively short-term period of the in
cubation. First, we pre-defined decay rates of 0.2 (which is equivalent to 
a turnover time of 5 days, kf) under 15 ◦C for the fast C pools, and 0.02 
day− 1 (which is equivalent to a turnover time of 50 days, ks) for slow C 
pools. Then, using the mineralization data under 15 ◦C, the pool size of 
the two pools were optimized. For the passive pool, we assume that its 

Table 2 
Explanatory variables used to explain the variance of Q10 values.  

Category Variable 
Code 

Variable description Unit 

Rf Rf Cumulative respired fraction % 
Climate SoilT Annual mean soil temperature ◦C 

SoilTw Average soil temperature in warmest 
month 

◦C 

SoilTc Average soil temperature in coldest 
month 

◦C 

E Elevation above sea level m 
Edaphic 

properties 
pH Soil pH – 
SOCc Soil organic carbon content g kg− 1 

SOCs Soil organic carbon stock Mg 
ha− 2 

MBC Microbial biomass content mg 
kg− 1 

DOC Dissolved organic carbon content mg 
kg− 1 

DCN The ratio of DOC to dissolved organic 
nitrogen 

– 

SM Soil moisture at the time of soil 
sampling 

% 

TN Total soil nitrogen content g kg− 1 

TP Total soil phosphorus content g kg− 1 

POC Particulate organic carbon content g kg− 1 

Physical 
protection 

SC The percentage of silt and clay % 
FO The sum of free oxides mg 

kg− 1 

AO The sum of amorphous oxides mg 
kg− 1 

MOC Mineral-associated organic carbon g kg− 1 

MOC2 The proportion of MOC in total SOC % 
MPOC The ratio of MOC to POC – 
OxiC The proportion of oxides-bond C in 

total SOC 
% 

AggC The proportion of macroaggregate C 
in total SOC 

% 

AFOC The ratio of amorphous Fe/Al-bond C 
to SOC 

– 

AFDC The ratio of free Fe/Al-bond C to SOC – 
Molecular 

structure 
AC The proportion of alkyl C % 
OAC The proportion of O-alkyl C % 
AROC The proportion of aromatic C % 
CARC The proportion of carboxylic C % 
ACOC The ratio of alkyl C to O-alkyl C – 
HBHI The ratio of hydrophobic C to 

hydrophilic C 
– 

PS The proportion of polysaccharide C % 

Note: Except E, all variables were depth-specifically measured. 
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turnover time is much longer than the duration of the incubation, and 
both its decay rate and size were optimized. Under 5 ◦C incubation, the 
model shared the optimized pool sizes under 15 ◦C, but their decay rates 
were re-optimized. That is, the three pools are defined by certain decay 
rates under 15 ◦C, and incubation temperature only changes the decay 
rates rather than the size of a C pool. This approach with pre-defined 
decay rates has an advantage of making the pools (particularly the 
fast and slow pools) comparable across sites and through soil depths. 

Model parameters were optimized using Bayes’ theorem. The sum of 
the probability density of predictions (θ) was maximized to target the 
best agreement between predictions and observations: 

θ=
∑n

i=1

1
̅̅̅̅̅̅̅̅̅̅̅̅̅
2⋅π⋅σ2

i

√ ⋅e
−
(xi − μi)

2

2⋅σ2
i , (8)  

where μi is the average of ith observations of Rs, σi the standard devia
tion of the replicates of the ith observations, xi the corresponding model 
predictions, n the total sample size of observations (n = 13). For kp, we 
assumed a prior uniform distribution ranging from 1e-5 (which is 
equivalent to a turnover time of ~274 years) to ks. For ff, fs and fp, a prior 
uniform distribution was assumed (0–0.1 for ff and 0–0.2 for fs, 
acknowledging that the two labile pools may only account for a small 
fraction of total SOC), given the condition: ff + fs + fp = 1. The initial 
fractions of the three pools of the same soil were shared by both incu
bation temperatures considering that incubation temperature does not 
change this fraction. Posterior probability distributions of parameters 
were obtained using the differential evolution adaptive metropolis al
gorithm (Vrugt and Ter Braak, 2011) – a Markov Chain Monte Carlo 
(MCMC) technique – by running three chains. Gelman–Rubin diagnostic 
index (G) was used to determine the convergence of the MCMC simu
lations (Brooks and Gelman, 1998) with a threshold value of 1.01. That 
is, if G is less than 1.01 for all parameters, the MCMC simulations were 
considered to be converged. Using the optimized model parameters, the 
model could explain 98% of the variance of Rs (Fig. S1). The MCMC was 
run using the runMCMC function in package BayesianTools in R version 
4.0.3 (R Development Core Team, 2021). Using the optimized decay 
rates (i.e., kf, ks and kp) for each pool, we calculated Q10 values for each 
pool as (Qin et al., 2019): 

Q10− k =

(
kw
kc

) 10
Tw − Tc

, (9)  

where kw and kc are the optimized decay rates of a pool under Tw and Tc, 
respectively. 

2.6. Statistical analyses 

For Q10-cum, we examined its difference among soil depths (D, i.e., 
the five depths with three replicates for each depth) and elevations (E, i. 
e., the ten elevations) using a two-way analysis of variance (ANOVA) 
with the consideration of possible interactions. For Q10-k and Q10-q, a 
three-way ANOVA was conducted by including the modeled three SOC 
pools (P) and respired SOC fractions (Rf) as another variable, respec
tively. Data normality and variance homoscedasticity were tested using 
the Shapiro-Wilk test and Levene’s test, respectively. When normality or 
variance homoscedasticity were not achieved, data were log- 
transformed. Focusing on Q10-cum, a correlation analysis was conduct
ed to assess its correlation with elevation, depth and the measured 
edaphic properties and SOC compounds. A canonical ordination-based 
redundancy analysis (RDA) (Borcard et al., 2011) was also conducted 
to explicitly explore the relationships between Q10 metrics (i.e., Q10-cum, 
Q10-q, Q10-k) and an explanatory matrix. The explanatory matrix includes 
a suite of variables reflecting climatic and edaphic conditions as well as 
measurements reflecting SOC physiochemical stability (Table 2). The 
RDA was performed on standardized Q10 values and explanatory vari
ables using the rda function in R package vegan. 

Focusing on Q10-q values we further conducted a machine learning- 
based random forest analysis (RFA) (Haaf et al., 2021) to identify the 
main predictors of Q10 to complement RDA results. We classified the 
predictor variables into six groups: 1) climate conditions indicated by 
elevation and soil temperature, 2) edaphic properties (e.g., soil pH, soil 
moisture, SOC), 3) physiochemical protection of SOC (e.g., MOC, 
macroaggregate occluded-C, Fe/Al-bound C), 4) molecular structure of 
SOC determined by 13C CP-MAS NMR, 5) respired fraction (Rf, which 
represents the lability of respired SOC) and 6) soil depth. The relative 
importance of individual variables for the six groups of predictors were 
summed respectively to indicate their overall relative importance. These 
analyses were conducted using the randomForest package in R version 
4.0.3 (http://cran.r-project.org/). In addition, we used path analysis (i. 
e., structural equation models) to further clarify the complex in
terconnections among predictors. The abovementioned variable groups 
(e.g., climate conditions, edaphic properties, physical protection, and 
molecular structure) were included as latent variables in the path 
analysis. Fig. S2 shows the individual indicators for each latent variable. 
The partial least squares (PLS) approach was used for the path analysis 
(PLS-PA). A non-parametric bootstrapping (200 resamples in this study) 
was used to estimate the precision of the PLS parameter estimates. The 
95% bootstrap confidence interval was used to judge that whether the 
estimated path coefficients are significant. All predictors in the PLA-PA 
were standardized. The PLS-PA analyses were performed using the 
package plspm in R version 4.0.3 (http://cran.r-project.org/). 

3. Results 

Q10-cum values varied widely across the ten elevations and five soil 
depths, ranging from 1.61 to 2.24 (Fig. 1a). This variation of Q10-cum was 
predominantly explained by elevation (F = 45.72, p < 0.001), while the 
effect of depth was relatively weak albeit significant (F = 6.93, p <
0.001; Table 3, Fig. 1a). Correlation analysis also suggested that Q10- 
cum was more strongly correlated to elevation than to soil depth 
(Fig. 2a vs 2b). For Q10-q estimated for three respired fractions of 
0–0.1%, 0.2–0.3%, and 0.4–0.5%, which represents substrate lability, its 
variance was also mainly influenced by elevation (F = 53.30, p < 0.001; 
Table 3). It was also apparent that Q10-q significantly increased with 
decomposition (Fig. 1b, c, d). Specifically, for Rf of 0–0.1%, Q10-q on 
average was 2.42 across the elevations and depths, it was increased to 
2.44 for Rf of 0.2–0.3% and 2.52 for Rf of 0.4–0.5% (Fig. 1b, c, d). Be
sides Q10-cum and Q10-q, modelling based on the three-pool C model 
found that passive pool (Cp, average Q10-q = 3.83) had significantly 
higher Q10-k than fast pool (Cf, average Q10-q = 3.35) and slow pool (Cs, 
average Q10-q = 2.82) (Fig. 1e, f, g). Three-way ANOVA again identified 
that the effect of three pools themselves on the variance of Q10 was 
significantly higher than elevation and soil depth (Table 3). These re
sults demonstrated the vital role of soil elevation-origin and SOC lability 
(which is reflected by both the cumulative respired fractions and three 
modeled SOC pools) in controlling temperature sensitivity of soil SOC 
mineralization. 

In terms of the chemical composition of SOC, both ACOC and HBHI 
were increased with soil depth and elevation (Fig. 3a, b, c). More 
recalcitrant SOC in deeper depth of colder regions was observed. Cor
relation analysis showed that Q10 was significantly (P < 0.001) and 
positively correlated with ACOC and HBHI at all soil depths (Fig. 4). 
MOC2, OxiC and AggC were also significant correlated to soil depth and 
elevation (Fig. 3d, e, f). Specifically, the proportion of mineral- 
associated and oxides-bounded SOC were increased with soil depth, 
whereas less proportion of SOC was occluded within macroaggregates 
(2–0.25 mm) in deep soil layers. Besides, more SOC was protected by soil 
aggregates and oxides in higher elevation soils (Fig. 3f). 

The RDA explained 73% (i.e., R2 = 0.73) of the total variance of the 
data (Fig. 5), to which the first two canonical axes (i.e., RDA 1 and RDA 
2) contributed 59% and 14%, respectively (Fig. 5). This result demon
strated that the major linear trends/relationships in the data had been 
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captured by the RDA and could well explain the data. Among the 30 
potential controlling factors assessed (Table 2), 16 of them were iden
tified to have significant effects. Specifically, HBHI, ACOC, AC, OxiC 
played an important role in RDA 1 and were positively correlated to each 
other (the angle between these variables were less than 90◦, Fig. 5). 
Three variables representing depth-specific soil temperature along the 
elevation transect (i.e., SoilT, SoilTw and SoilTc) were important for 
both RDA 1 and 2. MPOC was also important for RDA 2. Both Q10-cum 
and Q10-q were apparently positively correlated to HBHI, ACOC, AC, 
OxiC, SC, TP, SOCs and MPOC, but negatively correlated to SoilT, 
SoilTw, SoilTc and pH (the angle between these variables and Q10-cum 
and Q10-q were larger than 90◦, Fig. 5). It is intriguing to note that Q10-k 
for the three pools (i.e., Q10-fast, Q10-slow and Q10-passive) simulated by the 
three-pool carbon model presented distinct relationships with explana
tory variables (Fig. 5). For example, Q10-fast was positively correlated to 
soil temperature and negatively correlated to AO, but Q10-passive showed 
opposite correlations to these variables (Fig. 5). This result highlighted 
that temperature sensitivity of pools with different decay rates is 
determined by distinct processes (i.e., chemical recalcitrance and 
physiochemical stabilization). 

As expected, random forest analysis, which considers non-linear re
lationships, explained more (R2 = 0.85) variance of Q10-q with a RMSE of 
0.21 (Fig. 6a) compared with RDA (Fig. 5). In line with the RDA result, 
HBHI (i.e., the ratio of hydrophobic to hydrophilic carbon substrates) 
was the most important predictor variable which alone contributed 22% 
to the explained variance among the ten most important controlling 
factors (Fig. 6b). Following HBHI, Rf (cumulative respired fraction) and 
ACOC (the ratio of alkyl C to O-alkyl C) were the two most important, 
and each contributed another >10% (Fig. 6b). Grouping the explanatory 
variables into six groups reflecting chemical molecular structure, 
physical protection, respired fraction, edaphic properties, climatic 
conditions and soil depth, the results showed that the three groups 
relating to chemical composition and physiochemical stabilization of 
SOC (i.e., molecular structure, physical protection and respired fraction) 
contributed >80% of the explained variance (Fig. 6b). Similar to RDA 
results, partial dependence analysis indicated that Q10-q was generally 
positively correlated to HBHI, RF, ACOC, AFOC, AC, OAC, but nega
tively to AFDC, OxiC, SoilTc and PS (Fig. 6c). However, it should be 
noted that there was high variability in the controlling factors for Q10-q, 
demonstrating nonlinear relationships between Q10 and controlling 

Fig. 1. Variation of Q10 values across soil depths and elevations. Q10-cum, calculated based on cumulative respiration at the end of the 128-day incubation; Q10-q, 
calculated for cumulative respired fractions of 0–0.1%, 0.2–0.3% and 0.4–0.5% using the Q10-q method; Q10-k, calculated based on the decay rates of three pools (i.e., 
fast, slow and passive pools) modeled by a three-pool carbon model. Points at elevations of 4559, 4090, 3448, 2762, 2070 m are average values of three replicates. 
See Table 3 for statistics of analysis of variance of Q10 values. 
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factors (Fig. 6c). 
The path analysis considering the direct and indirect effects of 

climate, soil depth, edaphic properties, molecular structure, and phys
ical protection could explain 63%, 50%, 42%, 31% and 70% of the 
variance of Q10-cum, Q10-q, Q10-fast, Q10-slow and Q10-passive, respectively 
(Fig. 7). For Q10-cum, molecular structure and physiochemical protection 
presented the strong direct effect (the path coefficient reaches to 0.77 
and 0.45, respectively), while the direct effects of other variables were 
relatively weak and insignificant (Fig. 7b). However, the effects of 
climate (e.g., Elevation and SoilT) and edaphic properties (i.e., pH, SM, 
SOC, TP and TN) manifested via its effect on physical protection (indi
rect effect), while 78% of the variance of physical protection could be 

explained by these variables (Figs. 7b and 6 and S2). Particularly, 
climate showed the strongest indirect effect on Q10-cum and even 
exceeded the direct effect of physical protection (Fig. 8). As the distinct 
controlling factors for Q10 of the three modeled pools identified by the 
RDA (Fig. 5), the path analysis also found that Q10-fast was predomi
nantly influenced by physical protection and, to a less extent, by climate; 
while the direction of the effect of climate on Q10-slow and the direction 
of the effect of molecular structure on Q10-passive were the same, the 
direction of the effect of edaphic properties on Q10-slow and Q10-passive 
was reversed (Fig. 7b). Generally, physical protection and/or molecular 
structure exerted the strongest direct effects, while the indirect effects of 
climate manifested via its marked effects on physical protection and 
molecular structure (Figs. 7 and 8). Above all, these results revealed the 
dominant role of molecular structure and/or physical protection in 
regulating Q10 which in turn was predominantly regulated by climatic 
conditions reflected by elevation and soil profile temperature (Figs. 7 
and 8 and S2). 

4. Discussion 

4.1. Q10 variation across soil depths 

In the study region, we found that soil depth has significant effect on 
temperature sensitivity of SOC decomposition, but this effect is rela
tively small compared with the effect of elevation (Table 3, Figs. 1 and 
2). Across the elevational transect from 3365 to 4590 m in the same 
study region, Xu et al. (2021) found that Q10 of SOC decomposition at 
two depths (0–20 cm vs 40–60 cm) ranged from 1.28 to 2.10 by incu
bating soil samples for 60 days. These Q10 values are in line with our Q10 
estimates in the similar elevation range of Sygera mountains. In the 
literature, there are contradictory conclusions on the temperature 
sensitivity of SOC decomposition across soil depths, which may be a 
consequence of contrasting climatic, edaphic and biological conditions 
(e.g., vegetation cover) and method applied among the studies (Li et al., 
2018, 2020; Qin et al., 2019; Vaughn and Torn, 2019; Xu et al., 2021). 
The short-term (hours to days) temperature sensitivity of SOC decom
position of 90 upland forests soils, as examined using a dynamic tem
perature ramping method, was reported to significantly increase with 
soil depth (Li et al., 2020). On the contrary, a 330-day incubation of 
permafrost soils from Tibet, China, detected weaker temperature 
sensitivity of SOC in deeper layers due to lower substrate accessibility 
for microbial decomposition (Qin et al., 2019). In a temperate forest, in 
situ warming of soil profile down to 1 m found that soil respiration to 
warming did not show significant difference among soil depths, albeit 
heterotrophic respiration derived from SOC mineralization was not 
separated from the total soil respiration (Hicks Pries et al., 2017). Our 
results here showed that Q10 increased with soil depth, particularly in 
higher elevation gradients (e.g., from elevation 3411 m–4559 m; Fig. 1). 
As indicators for physiochemical protection of SOC (e.g., MOC, OxiC and 
AggC) exhibited similar variation with soil depth among the ten sam
pling sites (Fig. 3), the greater depth-induced increase in Q10 in higher 
elevational soils might be attributed to more recalcitrant SOC in deep 
soils. Based on these results, under future climate warming, our results 
provide additional evidence that SOC in different soil layers may show 
variable response to warming under different climatic and edaphic 
conditions. Mechanisms underpinning such spatial variability should be 
further elucidated. 

4.2. Q10 variation across elevations 

Among vegetations distributed along the 2500 m elevation transect, 
significant difference in Q10 was observed. It was general that SOC in 
higher elevations was more sensitive to temperature changes (Figs. 1 
and 2). This result derived from the temperature gradient along the 
elevation transect is well in line with findings based on data synthesizing 
and process-based modelling across large spatial extents covering 

Table 3 
Analysis of variance of temperature sensitivity of soil organic carbon (SOC) 
decomposition estimated by different Q10 approaches as impacted by different 
controlling factors.  

Q10 Variables df F p 

Q10-cum Elevation (E) 9 45.72 ***  
Soil depth (D) 4 6.93 ***  
E × D 36 0.78 ns 

Q10-q E 9 53.30 ***  
D 4 26.73 ***  
Respired fraction (Rf) 12 5.78 ***  
E × D 36 3.41 ***  
E × Rf 48 2.39 ***  
D × Rf 39 0.89 ns  
E × D × Rf 147 0.98 ns 

Q10-k E 9 2.04 *  
D 4 3.03 *  
SOC pool (P) 2 68.93 ***  
E × D 36 1.07 ns  
E × P 18 12.89 ***  
D × P 8 2.98 **  
E × D × P 72 1.95 *** 

Note: ns, non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001. 

Fig. 2. The correlation of Q10-cum with soil depth and elevation. Q10-cum, 
calculated based on cumulative respiration at the end of the 128- 
day incubation. 
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diverse climate zones (Koven et al., 2017; Wang et al., 2019; Lei et al., 
2021). That is, SOC decomposition is more sensitive to temperature 
changes in colder regions. There would be two aspects of reasons un
derpinning such climate-driven temperature sensitivity of SOC decom
position: the composition of SOC and vegetation. In terms of SOC 
composition, in cold regions, plant materials decompose slowly due to 
low temperature, resulting in a high proportion of particulate organic 
carbon in total SOC (Mueller et al., 2015; Poeplau et al., 2017), while 
particulate organic carbon has been found to be more sensitive to tem
perature compared with other pools such as mineral-associated organic 
carbon (Lugato et al., 2021). Besides, vegetation (e.g., forest vs grass
land) under different climatic conditions have distinct litter production 
in terms of quantity and quality as well as root dynamics (Freschet et al., 

2017; Wang et al., 2019), which ultimately influence SOC formation and 
transformation thereby its temperature sensitivity (Wagai et al., 2013; 
Cordova et al., 2018). Regression analysis (Fig. 4) revealed that Q10 was 
more related to depth-specific soil temperature (negative coefficients) 
and SOC chemical composition (positive coefficients) across sites in all 
soil depths. Our data also showed that the chemical composition of SOC 
(e.g., AC – the proportion of alkyl C estimated from 13C-NMR peak areas) 
is closely correlated to soil climate as reflected by mean annual soil 
temperature and mean soil temperature in warmest month (Fig. 5). 
Above all, it is reasonable to propose that climate-induced shifts vege
tation cover that control carbon inputs (in terms of both quality and 
quantity) might be the underlying reasons of climatological control on 
Q10. 

Fig. 3. Chemical composition (a–c) and physiochemical protection indicators (d–f) of SOC across soil depths and elevations. ACOC, the ratio of alkyl C to O-alkyl C as 
investigated by 13C-NMR; HBHI, the ratio of hydrophobic C to hydrophilic C as investigated by 13C-NMR; PS, the proportion of polysaccharide C as investigated by 
13C-NMR; MOC2, the proportion of MOC in total SOC; OxiC, the proportion of oxides-bond C in total SOC; AggC, the proportion of macroaggregate C in total SOC. 

Fig. 4. Correlation coefficients (pearson’s r) between Q10-cum and examined variables in each soil depth. *, p < 0.05; **, p < 0.01; ***, p < 0.0001. See Table 2 for 
explanation of the abbreviations. 
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4.3. Q10 as impacted by chemical composition and physical protection of 
SOC 

Our multi-approach assessment provided evidences that both 
chemical composition of SOC represented by molecular structure and 
physiochemical carbon pools were identified to be important for Q10 
(Figs. 5–7). Specifically, for Q10-cum and Q10-q (which are two metrics 
representing overall temperature sensitivity of SOC decomposition), 
molecular structure and physiochemical protection presented strong 
direct effects (the path coefficient reaches to 0.77 and 0.45 for Q10-cum, 
and 0.63 and 0.54 for Q10-q, respectively), while the direct effects of 
other variables were relatively weak (Fig. 7). In addition, the RFA results 
also demonstrated that Q10 variations were primarily explained 
(41.08%) by molecular structure, and followed by physical protection 
(28.24%, Fig. 6b). It is generally accepted that more chemically recal
citrant compounds have a higher intrinsic temperature sensitivity 
(Davidson and Janssens, 2006). As the Q10 values in this study were 
apparent temperature sensitivity, our result indicated that the intrinsic 

sensitivity does not vanish albeit the divergent soil and climate condi
tions along the elevation transect and through soil profile. Indeed, the 
comprehensive measurements of SOC composition relating to physi
ochemical protection of SOC against decomposition (i.e., accessibility of 
SOC to microbial decomposition) enabled us to distinguish the effect of 
chemical recalcitrance and accessibility. The results found that while 
chemical composition of SOC governed Q10, physiochemical protection 
of SOC was found to be also important, demonstrating that the tem
perature sensitivity of SOC decomposition is modulated by combined, 
integrated effects of both chemical recalcitrance and physiochemical 
protection. 

According to the calculation of cumulative respired C fraction (Rf), it 
is noteworthy that Q10-q significantly increases with Rf (Fig. 1b, c, and 
d). Rf represents a gradient of decreasing lability of SOC with the pro
ceeding of incubation. This decrease of lability would be due to the 
reduce of chemically labile substrates (e.g., microbes would preferen
tially use this C fraction) (Nottingham et al., 2019) and/or increase of 
environmental constraints on SOC decomposition (e.g., soil compaction 
and acidification with the proceeding of incubation). There is evidence 
that SOC turnover is more strongly controlled by carbon accessibility 
rather than carbon recalcitrance (Dungait et al., 2012; Hemingway 
et al., 2019; Qin et al., 2019). In terms of SOC dynamics in response to 
global warming, our results suggest that both chemical recalcitrance and 
accessibility are important. As such, SOC pools with distinct physi
ochemical properties would exert different temperature sensitivities. 
Indeed, this expectation has been supported by the results based on the 
three-pool model which divide SOC to fast, slow and passive pools. The 
redundancy analysis showed that Q10-fast was positively correlated to 
soil temperature, while the Q10-passive showed opposite correlations to 
these variables and were more related to the variables reflecting the 
molecular composition and physiochemical protection of SOC (Fig. 5). 
These results indicated that potential mechanisms regulating Q10 
differed for various soil C pools. To be specific, most organic compounds 
in fast C pool are mainly unprotected and readily accessibility to soil 
microbes (Schmidt et al., 2011). As such, Q10 variation in this C pool was 
primarily mediated by microbial communities (Qin et al., 2019), while 
the diversity and composition of microbial community shifted with cli
matic gradients (Djukic et al., 2010; Xu et al., 2021). However, as the 
proceeding of decomposition and exhausting of labile C pool, the quality 
of substrates and SOC protection against decomposition become the 
major determinants of Q10. 

Fig. 5. Redundancy analysis demonstrating the correlations of Q10 values to a 
series of variables. The first and second RDA axes can explain 59% and 14% of 
variances of the Q10 metrics. Insignificant variables are in grey color. See 
Table 2 for explanation of the abbreviations. (For interpretation of the refer
ences to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 6. Model performance and controlling factors of Q10-q values. a, the performance of a random forest model to explain the variance of Q10-q values across soil 
depths and elevations. RMSE, rooted mean squared error; R2, the determinant coefficient of model. b, the ten most important controlling factors identified by the 
random forest model and their contribution to the explained variance. c, partial dependence of Q10-q values on the identified ten factors. See Table 2 for explanation 
of abbreviations of the variable predictors. 
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The results further revealed that the direct effect of climate of Q10 
was small, but climate could explain ~80% of the variance of chemical 
composition and physiochemical protection of SOC (Figs. 7 and 8). As 
such, the influence of climate was mainly indirectly reflected via its 
predominant effect on chemical composition and physiochemical pro
tection, directly supporting our previous proposition. As been discussed 
above, climate is the predominant factor determining: 1) vegetation type 

therefore chemistry and quality of carbon inputs to soil (Coûteaux et al., 
1995; Aerts, 1997), 2) soil pedogenesis process therefore 
organo-mineral interactions or/and aggregate protection (Doetterl et al., 
2015, 2018), and 3) microbial community composition and functioning 
therefore the quantity and quality of microbial necromass which is 
considered to be resistant to decomposition and a significant contributor 
to the soil C pool (Liang et al., 2019; Wang et al., 2021). In the context of 

Fig. 7. Path analysis results of the controlling factors 
on Q10. Numbers show the path coefficients. Arrows 
indicate the effect direction, while red and blue paths 
indicate the effect is significantly (p < 0.05) negative 
and positive, respectively, and the magnitude of path 
coefficients are represented by the path thickness. 
Insignificant paths are shown as grey lines. Indicators 
for the relevant latent variable are shown in Table 2, 
and the loadings of individual variables to the latent 
variables are shown in Fig. S2. R2 shows the deter
minant coefficient for the corresponding variable, 
indicating the variance explained by the model. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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climate warming, baseline climatic conditions and their controlling of 
soil physiochemical environmental conditions and chemical structure of 
SOC compounds must be simultaneously considered in order to provide 
reliable predictions of profile SOC dynamics. 

4.4. Limitations and uncertainties 

Although we explicitly assessed potential regulators of Q10 relating 
to chemical composition and physiochemical stability of SOC through 
soil depths and among vegetation types along a 2500 m elevation 
transect, we note some limitations and/or uncertainties of our investi
gation. First, the incubation, like all laboratory incubation experiments, 
cannot fully captures the real environmental gradient existed along soil 
profile in situ. For example, decreasing O2 concentration with increasing 
soil depth may be common in most soils. Some experiments comparing 
SOC mineralization under aerobic and anaerobic incubation conditions 
found that O2 level is a significant factor regulating temperature sensi
tivity of microbial mineralization via mediating microbial metabolism 
and SOC substrate use strategies (Keiluweit et al., 2017; Huang et al., 
2020). Second, we did not explicitly investigate the role of microbes 
such as their metabolism and activity in regulating Q10. Additional 
consideration of microbial processes (e.g., microbial enzyme activity, 
community structure and/or carbon use efficiency) would further 
improve the interpretation of the variability of Q10 (Walker et al., 2018; 
Qin et al., 2021; Xu et al., 2021). At the same study region, indeed, Xu 

et al. (2021) found that microbial diversity and community composition 
play an important role in stabilizing SOC decomposition across soil 
depths. However, here we would like to point out that there would have 
complex interconnections among chemical composition, physical pro
tection and microbial activities in regulating SOC decomposition and its 
response to climate change. Third, the incubation was relatively short (i. 
e., 128 days) and did not enable the three-pool carbon model to reliably 
infer decay rate for the passive pool with long turnover time and thus its 
Q10 (Jian et al., 2020). As expected, the model predicted larger vari
ability of Q10 for the passive pool than for the fast and slow pools 
(Fig. 1). The stability of passive pool may be with the involvement of 
various soil physiochemical protection processes, including trade-offs 
between chemical composition and physical protection. 

4.5. Conclusions 

By assessing Q10 values of SOC decomposition observed by incu
bating (128 days) soils from five soil layer depths down to 1 m in various 
vegetation types along a ~2500 m elevational gradient, we provided 
new evidence that Q10 is less varied through soil profile, but has sig
nificant difference among vegetation types. In general, SOC decompo
sition was more sensitive to temperature changes in higher-altitude sites 
where have lower temperature, confirming the expectation that SOC in 
colder regions (e.g., permafrost tundra systems and alpine ecosystems) 
might be more vulnerable to global warming (Koven et al., 2017; Wang 

Fig. 8. Standardized direct, indirect, and total effects of latent variables in the path analyses for five Q10 metrics. Total effect is defined as the sum of direct and 
indirect effects. 
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et al., 2019; Lei et al., 2021). Both chemical composition and soil 
physiochemical protection of SOC were identified to have direct effect 
on Q10 across the elevation gradient. Specifically, Q10 was notably 
positively correlated to the ratio of hydrophobic to hydrophilic organic 
carbon substrates, and to the ratio of alkyl C to O-alkyl C, demonstrating 
that chemically recalcitrant SOC pools are more sensitive to tempera
ture. Together with inhibited soil weathering and thus less physi
ochemical stabilization of SOC against decomposition, this can explain 
why SOC in cold regions is more sensitive to warming. Indeed, the role of 
climate manifests when its effects on chemical composition and physi
ochemical protection are considered. Climate reflected by elevation and 
depth-specific soil temperature could explain ~80% of the variance of 
either chemical composition or physiochemical stability across the soil 
depths and elevation gradient. Overall, our study revealed spatially 
heterogeneous temperature sensitivity of SOC decomposition, which is 
largely controlled by climate-induced variability of both chemical 
recalcitrance and physiochemical protection of SOC. Baseline climatic 
condition (which largely determines vegetation type and thus the 
quantity and quality of carbon inputs) and its direct and indirect effects 
on chemical recalcitrance and physiochemical protection of SOC must 
be properly considered in Earth system models in order to reliably 
predict SOC dynamics in response to global warming. 
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G., 2015. Large amounts of labile organic carbon in permafrost soils of northern A 
laska. Global Change Biology 21, 2804–2817. https://doi.org/10.1111/gcb.12876. 

Nottingham, A.T., Whitaker, J., Ostle, N.J., Bardgett, R.D., McNamara, N.P., Fierer, N., 
Salinas, N., Ccahuana, A.J., Turner, B.L., Meir, P., 2019. Microbial responses to 
warming enhance soil carbon loss following translocation across a tropical forest 
elevation gradient. Ecology Letters 22, 1889–1899. https://doi.org/10.1111/ 
ele.13379. 

Pei, J.M., Yan, D., Li, J.Q., Qiong, L., Yang, Y.W., Fang, C.M., Wu, J.H., 2022. Alpine 
meadow degradation enhances the temperature sensitivity of soil carbon 
decomposition on the Qinghai-Tibetan plateau. Applied Soil Ecology 170, 104290. 
https://doi.org/10.1016/j.apsoil.20- 21.104290. 

Poeplau, C., Kätterer, T., Leblans, N.I., Sigurdsson, B.D., 2017. Sensitivity of soil carbon 
fractions and their specific stabilization mechanisms to extreme soil warming in a 
subarctic grassland. Global Change Biology 23, 1316–1327. https://doi.org/ 
10.1111/gcb.13491. 

Qin, S., Chen, L., Fang, K., Zhang, Q., Wang, J., Liu, F., Yu, J., Yang, Y., 2019. 
Temperature sensitivity of SOM decomposition governed by aggregate protection 
and microbial communities. Science Advances 5, eaau1218. https://doi.org/ 
10.1126/sciadv.aau1218. 

Qin, S., Kou, D., Mao, C., Chen, Y., Chen, L., Yang, Y., 2021. Temperature sensitivity of 
permafrost carbon release mediated by mineral and microbial properties. Science 
Advances 7, eabe3596. https://doi.org/10.1126/sciadv.abe3596. 

R Development Core Team, 2021. R: A Language and Environment for Statistical 
Computing. R Foundation for Statistical Computing, Vienna, Austria.  

Schmidt, M.W., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., 
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