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Abstract
Disturbances in vegetated land could dramatically affect the process of vegetation growth and
reshape the land cover state. The overall greenup of vegetation on the Tibetan Plateau (TP) has
almost served as a consensus to date. However, we still lack consistent acquisitions on the timing,
the spatial patterns, and the temporal frequency of vegetation disturbance over the TP, limiting the
capacity for planning land management strategies. Therefore, we explored the spatiotemporal
pattern and variation of vegetation disturbances across the TP during the past decades and analyzed
the disturbance agents. We utilized 37-year Landsat time series images and field observations
coupled with a temporal segmentation approach to characterize the spatiotemporal pattern of
vegetation disturbances across the TP for the period 1986–2018. The results from this study
revealed that 75.71 M ha (accounting for 29.34% of TP’s area) vegetation area underwent at least
one disturbance, of which 8.44 M ha area ever experienced large-scale disturbances (disturbance
area greater than 0.9 ha and disturbance magnitude (the difference between the spectral value of
pre-disturbance and that of post-disturbance) over 0.2). Further, the spatial distributions of these
large-scale disturbances varied over time: before 2002, the disturbed sites were evenly distributed
over the southeast part of the TP probably induced by overgrazing and unscientific livestock
management, while after 2002, most disturbances were concentrated in the south of the Yarlung
Tsangpo, mainly caused by anthropogenic activities, such as urban area, roadways, railway, and
water control projects. This study presents an effort to characterize vegetation disturbances and
their variations over the past decades on the TP, which provides crucial insights toward a complete
understanding of vegetation dynamics and its causal relationship with human activities.

1. Introduction

As an integral part of the terrestrial ecosystem, vegeta-
tion regulates the exchange of carbon, water, impetus,
and energy between the earth’s surface and the

atmosphere (Bonan et al 1992, Haberl et al 2007).
Change in vegetation structure and function could
infer the effects of climate change and human inter-
ventions because vegetation is highly sensitive to vari-
ous natural and anthropogenic factors (Parmesan and
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Yohe 2003). To tackle urgent issues related to global
climate change, carbon emissions and losses of biod-
iversity, detailed information about long-term veget-
ation dynamics over a large spatial extent and a long
temporal scale is urgently needed (Dixon et al 1994,
DeFries et al 1999, Brun et al 2019, Chen et al 2021,
Smith et al 2022). In the past several decades, con-
siderable attention has been dedicated to the changes
in vegetation at regional to global scales using forest
inventory and satellite observation data (Hansen et al
2013, Ceccherini et al 2020, Piao et al 2020). However,
most of these only focused on the long-lasting trend
of vegetation growth, lacking more detailed depic-
tion of the inter-annual and intra-annual changes
in vegetation, especially for the disturbance change
within them (Verbesselt et al 2010, Watts and Laffan
2014). Referring to other related studies (Verbesselt
et al 2010, Zhu et al 2020), we define the vegeta-
tion disturbance as the abrupt change where there
is a significant decrease in vegetation volume within
vegetated land caused by anthropogenic or natural
processes. Vegetation disturbances caused by logging,
urbanization, and fire could potentially alter the pro-
cess of vegetation growth and affect local ecosystems.
Accurate detection of such changes and attribution to
the causes are therefore crucial for ecosystem man-
agement, biodiversity protection, and conservation
policies (Krawchuk et al 2020, Ye et al 2021b).

The Tibetan Plateau (TP), referred to as the
Earth’s ‘Third Pole’, is one of the most vulnerable
areas under global climate change. Over the past dec-
ades, a series of studies have investigated and revealed
the trend of vegetation greening in the TP (e.g. Shen
et al 2015a, Zhu et al 2016). Climate change, particu-
larly the warming (Qiu 2008) and wetting (Chen et al
2013) trends, are thought to driving the long-term
greening tendency of the vegetation on the TP (Piao
et al 2014, Zhu et al 2016). Nevertheless, detailed
information on inter-annual vegetation fluctuation
was often ignored from the general greening trend in
these previous studies (Piao et al 2011). The disturb-
ance change of vegetation is a significant source of
the inter-annual fluctuations especially for the eco-
logical fragile zones like the TP. In recent years, the
TP has suffered from more and more vegetation dis-
turbance such as fire, overstocking (Harris 2010), act-
ive rodents (Yang et al 2017), increasing attention has
therefore been paid on this regard. However, most of
the previous studies were developed at a local scale or
based on field observations (Qin et al 2014). Few stud-
ies have attempted to comprehensively characterize
the disturbance-driven changes in vegetation over the
TP with regards to their timing, duration, frequen-
cies, and intensity.

Over the past decades, remote sensing techno-
logy has been highly sought after and found wide
applications in terrestrial observation. Specifically,
free and open access to the Landsat archive from
2008 has unlocked the critical bottleneck to the cost

and access to imagery, which has changed the way
towards exploring the planet (Banskota et al 2014,
Wulder et al 2019). Moreover, the dense time series
image stacks have paved the way for a seamless detec-
tion of vegetation disturbances at an annual time
step (Hansen et al 2013). Accordingly, various tools
and algorithms have been proposed for monitor-
ing vegetation change based on the Landsat time
series, including offline change detection (e.g. Huang
et al 2010, Kennedy et al 2010), online change detec-
tion (e.g. Verbesselt et al 2010, Zhu and Woodcock
2014), and ensemble strategy (e.g. Healey et al 2018,
Bullock et al 2020). However, most related studies
are focused on forest disturbances detection (Hansen
et al 2016, Shimizu et al 2017, Senf and Seidl 2020, Ye
et al 2021a), with fewer investigations conducted for
vegetation disturbances, especially that occurring in
mountainous areas.

We investigate the spatiotemporal characteriza-
tion of vegetation disturbance of the TP from 1986–
2018 for improving knowledge of the impact of
human and natural coupled disturbances on the TP’s
vegetation. Specifically, the aims of this study were
to: (a) detect the spatial-temporal characteristics of
multiple vegetation disturbance and the inter-annual
change of disturbed area for the study period; (b) ana-
lyze disturbance-driven vegetation changes among
different vegetation types; (c) investigate the poten-
tial agents of vegetation disturbance change.

2. Materials andmethods

The overall workflow of study is delivered in figure
S1 (SI appendix), which consists of imagery pre-
processing, index selection, time-series segmentation,
and disturbance mapping.

2.1. Image data sets and preprocessing
A time series surface reflectance collection of Tier 1
Landsat 4, 5, 7, and 8 images during the period from
1984 to 2020 were employed in the study (1986–2018
for the actual detected years because no disturbances
were mapped for the years 1984–1985 and 2019–
2020, as current approach is unable to detect the dis-
turbances in the beginning and end of the period).
We only selected images within the plant growing
season (from early May through middle September,
SI appendix, figure S2) to minimize the influence
of ice and snow and guarantee inter-annual spec-
tral comparability of surface independent of pheno-
logical stages (Shen et al 2015b). Pixels with clouds
and cloud shadows were masked out from all images
utilizing the Fmask algorithm (Zhu and Woodcock
2014). To assure the inter-sensing harmonization and
temporal continuity between Landsat sensors, we also
conducted spectral transformation between Opera-
tional Land Imager and Enhanced Thematic Mapper
Plus (ETM+) using the coefficients suggested by Roy
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Figure 1. The vegetation type map of the Tibetan Plateau provided by the National Tibetan Plateau Data Center (data.tpdc.accn).
The pie chart represents the zonal statistics of each vegetation type in the vegetated areas. Reproduced from Hou (2019).
CC BY 4.0.

et al (2016). Images were merged into annual com-
posites using the medoid composites method, which
is robust against extreme values and more efficient
at generating value that is representative of the time
series than the commonly used maximum compos-
ite method (Flood 2013). The preprocessing of the
images was achieved with the help of Google Earth
Engine.

To obtain the distribution characteristics of veget-
ation disturbance on the TP, we also used a vegetation
map (Hou 2019). According to the vegetation map,
we have divided five vegetation categories, including
forest, steppe, meadow, shrub, and alpine vegetation.
The remaining vegetation types were labeled as ‘oth-
ers’ (figure 1).

2.2. Index selection
An analysis of six spectral indices was carried out in
order to determine which one captures the variation
in time series most accurately: the normalized burn
ratio (NBR), the normalized difference vegetation
index (NDVI), normalized difference moisture index
(NDMI), and the tasseled cap transformation indices
greenness (TCG), brightness (TCB) and wetness
(TCW). The analysis consists of two parts, first, we
chose a disturbed area covered with different veget-
ation (forest, meadow, and shrub) to evaluate the

sensitivity of the spectral indices at pre-disturbance,
during-disturbance, and post-disturbance based on
the annual composites derived from the prepro-
cessing (Runge et al 2022), and it is presented in
figure 1 with a size of 0.15 M ha; second, we calcu-
lated the disturbance signal-to-noise ratio (DSNR)
at pixel-level on the selected area for each spectral
index, which is a fit metric used to evaluate spectral
index’s effectiveness in disturbance detection (Cohen
et al 2018). Higher DSNR values indicate higher sig-
nal corresponding to noise:

DSNR=
yn − y1√∑n

i=1(yi−yi)
2

n

(1)

where y1 and yn respectively represent the values
of the start and end vertices of the segment; yi
represents the fitted spectral value and yi repres-
ents the original spectral value for all fitted points
between the start vertex and end vertex. The box-
plot was used to displayed different discriminat-
ing power (pre-disturbance, during-disturbance, and
post-disturbance) of indices and the distribution of
DSNR values for different indices.

Specially, our algorithm and analysis only focused
on ‘vegetated regions’, which hereinafter are defined

3

https://creativecommons.org/licenses/by/4.0/


Environ. Res. Lett. 18 (2023) 014016 Y Wang et al

Figure 2. Schematic of LandTrendr temporal segmentation. A disturbance segment (red line extracted by the start vertex and the
end vertex) could be characterized by the timing, magnitude, and duration.

as the pixels with an average NDVI larger than 0.1
over all growing seasons.

2.3. Time-series segmentation process
The pre-processed time series data were applied
as input to the temporal segmentation algorithm,
LandTrendr (Kennedy et al 2010). It is a spectral-
temporal segmentation algorithm which is used to
detect change in a time series of moderate resolu-
tion satellite imagery for producing trajectory-based
spectral time series information. This generated a
set of annual fitted images and a series of vertices
bounding line segments (SI appendix, The process
of LandTrendr temporal segmentation). According to
the segmented trajectories, we further utilized several
disturbance attributes (figure 2): timing of disturb-
ance is defined as the first year in which the disturb-
ance is visible; magnitude of disturbance is defined as
the difference between the spectral value correspond-
ing to the onset vertex and that corresponding to the
ending vertex; duration of disturbance is defined as
the time span (in years) of the segment (Kennedy et al
2012).

2.4. Disturbance change mapping
In this study, we applied the standard LandTrendr
parameters for segmentation and fitting processes.
Because of the concerns towards the forest manage-
ment unit,much forest-related research set thresholds
for both the mapping unit and disturbance mag-
nitude (e.g. Griffiths et al 2012, Kennedy et al 2012).
However, in order to maximize sensitivity in detect-
ing vegetation change, we did not limit the mapping
unit and disturbance magnitude for the mapping of
vegetation disturbance times in the first part of the
analysis (Saura 2002). Furthermore, we defined the
disturbances with area greater than 0.9 ha and mag-
nitude over 0.2 as large-scale disturbance referring to
forest-related studies (Griffiths et al 2012, Hislop et al
2019). To present the characterization of the large-
scale vegetation disturbances, we picked the max-
imum change segment from each pixel’s LandTrendr

trajectory and implemented a set of spatial filters,
including setting a minimum mapping unit of 0.9 ha
(10 pixels) and setting a minimum magnitude of
disturbance of 0.2. We found that there was an obvi-
ous difference in the distribution of early and late
stages, and therefore divided the analysis into three
categories, including the results of the whole period
(i.e. 1986–2018), the results before 2002 (midpoint of
the whole period), and the results after 2002. From
these segments that LandTrendr detected, our study
resulted in a set of metrics which depict the timing,
magnitude, and duration of the changes in vegetation.

2.5. Accuracy assessment
2.5.1. Sampling procedure
To validate the vegetation disturbance map, we built
a stratified random sample set, including 918 pixels
for undisturbed vegetation and 432 pixels for dis-
turbance class (SI appendix, figure S3), which was
determined following the sampling design sugges-
ted by Olofsson et al (2014). We also conducted a
field survey towards 100 points (68 for undisturbed
area and 32 for disturbed areas) in 2020. All samples
were manually interpreted by independent interpret-
ers through TimeSync7, combined with very high res-
olution (VHR) imageries accessible in Google Earth
and some other satellite-borne VHR imageries, like
QuickBird (0.61 m), WorldView (0.3–0.5 m), and
RapidEye (5 m) (Cohen et al 2010). Since some
samples cannot be labeled because of data gaps, a total
of 1353 samples (496 samples for disturbance and 857
disturbance samples for no disturbance) remained for
accuracy assessment.

2.5.2. Accuracy analysis
The accuracies of the final disturbance map were
assessed using 1353 pixel-based interpreted samples.
The accuracies were evaluated with regard to overall
accuracy (OA) according to the sample count-based

7 https://github.com/eMapR/TimeSync-Legacy
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error matrix following the method suggested by
Olofsson et al (2014). The class-specific omission
error, commission error and F1 score were also
calculated based on the error matrix. To evaluate the
accuracy of detected disturbance onset, we compared
the detected disturbance years (i.e. the disturbance
onset assigned by the algorithm) versus the inter-
preted disturbance years (i.e. the disturbance onset
assigned by the manual interpretation) in the valida-
tion data. In addition, we inspected two temporal seg-
mentations for two examples to perform qualitative
analysis.

2.6. Analysis of the potential agents for the
vegetation disturbance change
Considering the spatial distribution of the large-scale
disturbances after 2002, we used the points from
field survey to explore the potential agents for the
large-scale vegetation disturbance and further selec-
ted five typical areas to inspect the disturbance agents.
The agent was divided into three categories, includ-
ing anthropogenic factor (e.g. urbanization and road
construction), natural factor (e.g. fire and earth-
quake), and others. To comprehensively examine the
historical change and change agents, we employed
multiple data resources for disturbance characteriz-
ation, including the statistical yearbook, local history
raw Landsat data, and other available satellite images
(i.e. QuickBird, WorldView, and RapidEye).

3. Results

3.1. The best performed index for disturbance
mapping
The results suggest that the NBR, NDVI, and NDMI
had the highest discriminating power between the
three stages in their respective time series (figure 3).
TheNDVI andNDMI exhibited themostmarked dif-
ferences between the three stages, while the changes in
the NBR was relatively minor. Besides, the DSNR dis-
tribution presents that the NDVI have a higher dis-
tribution of DSNR compared to that of the NDMI,
showing a better performance for detecting vegeta-
tion disturbance. Although the indices as NBR are
broadly regarded as better at describing forest struc-
ture than the indices using shorter wavelengths (e.g.
the ever-present NDVI) (Hislop et al 2018), the
NDVI is less sensitive than other indices to vary-
ing sun-sensor geometry, hence making a NDVI
a safe and robust option for time-series analyses
(Veraverbeke et al 2012, Morton et al 2014); in addi-
tion, most vegetation types in the TP belong to the
species with relatively low biomass. In the case of
low vegetation biomass, NDVI performs better than
those shortwave-infrared based indices (e.g. NBR and
NDMI) which are sensitive to variations in the forest
structure (Cohen andGoward 2004, Cuevas-gonzález
et al 2009, Gasparri et al 2010), by avoiding common

saturation problem. The NDVI was therefore selected
as the input for temporal segmentation.

3.2. The accuracy of disturbance mapping
After taking the potential bias derived from the
stratified sampling design into consideration, our
disturbance mapping obtained an OA of 81.15%
(table 1). Disturbance commission and omission
errors were 21.10% and 33.67%, respectively. As for
the undisturbed class, the commission and omission
errors were 17.84% and 10.27%, respectively. The
F1 score of accuracy assessment reached 0.72, which
indicated that the LandTrendr performed well in cap-
turing the vegetation disturbances. Figure 4 displayed
that most samples are distributed on or near the
1:1-line, suggesting that the onsets of disturbances
have been correctly assigned. The qualitative analysis
demonstrated that the breaks and the trends iden-
tified from temporal segmentation align well with
what we observed from the ground (SI appendix,
figure S4).

3.3. Disturbance maps and its spatial and temporal
characteristics over the TP
The disturbance distribution and frequency are
mapped in figure 5. We identified a total of 75.71 M
ha of vegetation disturbance across the TP over the
period of 1986–2018, which accounts for 29.34% of
TP’s area. In all vegetated areas, most have not been
disturbed (count = 0, 69.6%, figure 5(E)). Within
the disturbed vegetation areas, vegetation disturbance
occurred mainly for 1–3 times, and they were evenly
distributed in the TP. Also, the areas with a single dis-
turbance were dominated, accounting for a propor-
tion of 22.8% of TP’s area. The disturbed area was
widely distributed in the vegetated area while the dis-
tribution was relatively dense in the following areas:
the areas around the cities, like Sining (figure 5(A)),
Lhasa, andNyingchi (figure 5(B)); the southern edges
of the TP where the land was covered with dense
forests (figure 5(C)) were also suffered from a higher
disturbance frequency; the eastern edges of the TP
with high forest coverage which was once devast-
ated by a major earthquake in 2008 (figure 5(D)).
Figure 6 presents the area of vegetation disturbed by
year, and an average of 2.29 M ha of vegetation has
experienced disturbance per year. Apart from the year
1988 with a relatively high disturbed areas detected
(3.53 × 106 ha), the results for other years did not
vary greatly. Still, an obvious increasing trend was
observed from 2015 to 2018.

We further explored the characteristics of timing,
magnitude, and duration of vegetation disturbance
for the first, second, and third times within the study
period, respectively (figure 7). As for the first time
(figures 7(A), (D) and (G)), the timings of disturb-
ances were relatively scattered throughout the veget-
ated areas over the TP. Specifically, the first disturb-
ances in the central of the TP were earlier than that
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Figure 3. Spectral indices for pre-disturbance (2007), during-disturbance (2008), and post-disturbance (2009–2011) for the test
site: NBR, NDVI, NDMI, TCG, TCB, TCW; distribution of the disturbance signal-to-noise ratio values for per spectral index:
DSNR.

Table 1. Confusion matrix, overall accuracy, and errors of omission and commission, as well as F1 score, all derived from independent
and randomly distributed validation samples of n= 1,353.

Estimated

Interpreted

Total Commission errorDisturbance No disturbance

Disturbance 329 88 417 21.10%
No disturbance 167 769 936 17.84%
Total 496 857 1,353
Omission error 33.67% 10.27%
Overall accuracy= 81.15% F1 score= 0.72

in the northern and southern regions of the TP; the
magnitude of disturbances was mainly concentrated
between 0 and 0.10, and the disturbances distributed
in the southeastern TP was larger than that distrib-
uted in the northwestern TP; as for the disturbance
duration, most disturbances lasted 1–5 yr distrib-
uted across the vegetated area. As for the second time
(figures 7(B), (E) and (H)), the disturbance in the

central and east of the TP was earlier than that in the
northern and southern edges of the TP; the results
of the magnitude of the second disturbances were
similar with that of the first disturbance; most second
disturbances lasted 1–5 yr also while some disturb-
ance lasted more than 16 yr, which was mainly dis-
tributed in the central and eastern TP. As for the third
time (figures 7(C), (F) and (I)), the spatial pattern of
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Figure 4. Validation of the detected disturbance onset. Detected year of disturbance versus interpreted year of disturbance for 329
independent reference plots. The tint signifies data point density (deeper tint represents more data points).

Figure 5. Spatial distribution of the estimated disturbance times in the Tibetan Plateau during 1986–2018. (A)–(D) Denote
several enlarged typical areas involved in master map. (E) is the statistics of different class in master map. The colors in (E)
correspond to the legend.
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Figure 6. Area of disturbed vegetation each year in the Tibetan Plateau from 1986 to 2018.

Figure 7. The spatial pattern of the timing, the magnitude, and the duration of vegetation disturbance for the first, second, and
third times in the Tibetan Plateau, respectively. (A), (D), and (G) are the disturbance for the first time; (B), (E), and (H) are the
disturbance for the second time; (C), (F), and (I) are the disturbance for the third time. (For visibility, plot size is enlarged,
undisturbed plots are not shown).

disturbancewas similar to that for the first and second
times, but the disturbance pixels were much sparser.

3.4. The characteristics of large-scale disturbances
Figure 8 displays the spatial and temporal patterns
of timing, magnitude, and duration of the large-
scale vegetation disturbances. The timing of the
disturbance of different categories (i.e. 1986–2018,

1986–2001, and 2002–2018) was obviously differ-
ent between the south and north of the east-west
section of the Yarlung Tsangpo river (SI appendix,
figure S5) in the southeastern of the TP (figures 8(A)–
(C)). Most disturbances in the north occurred early,
while most in the south occurred late. Furthermore,
the disturbance points were evenly distributed in the
southeastern of the TP before 2002 while that were
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Figure 8. The spatial pattern of the timing, the magnitude, and the duration of the large-scale vegetation disturbances in the
Tibetan Plateau. (A), (D), and (G) are the situations from 1986–2018; (B), (E), and (H) are the situations from 1986–2001; (C),
(F), and (I) are the situations from 2002–2018. (For visibility, plot size is enlarged, undisturbed plots are not shown).

concentrated in the south of the Yarlung Tsangpo
and were sparse in the north of the Yarlung Tsangpo
after 2002. As for the magnitude of the disturbance
of different categories (figures 8(D)–(F)), most dis-
turbances’magnitudewas 0.2–0.3 and the pointswere
scattered in the area. Still, a few points with a relat-
ively large disturbance magnitude (>0.5) were dis-
tributed in the southern and eastern edges of the
TP (i.e. northwestern Sichuan province, China). For
the duration of disturbance in different categories
(figures 8(G)–(I)), most disturbances lasted one year.
The disturbance points with a duration of 1–3 yr were
randomly scattered throughout the area nomatter for
the results of 1986–2018 or the results of 1986–2001.
But the results of 2002–2018 reveal that the disturb-
ances that lasted three years were concentrated in the
south of the Yarlung Tsangpo.

In summary, our results indicate that there was
a noticeable difference between the situations before
and after 2002 in terms of the large-scale disturb-
ances. Specifically, the disturbances before 2002 were
evenly dispersed across the southeastern TP, while the
disturbances after 2002 were spatially clustered in the
south of the Yarlung Tsangpo.

3.5. The distribution of vegetation disturbances
among different vegetation types
Figure 9 presented the results in two parts includ-
ing all disturbances (disturbance for the first, second,
and third time, respectively) and the large-scale dis-
turbances (the results of 1986–2018, 1986–2001, and
2002–2018, respectively). The disturbance distribu-
tion over different land covers are similar for the
disturbances of different sequence (the first, second,
and third time) (figure 9(A)), dominated by Meadow
and Steppe (together over 50% of the disturbed area)
and followed by Shrub, Forest, Alpine vegetation, and
Others.

As shown in figure 9(B), during the whole study
period (1986–2018), most large-scale disturbances
happened over meadow (40.09%), followed by the
shrub (25.79%) and the forest (20.80%); during the
period of 1986–2002, large-scale disturbances domin-
ated over meadow (52.06%) with substantial propor-
tions over shrubland (19.83%) and forest (13.62%);
during the period of 2001–2018, on the contrary,
the disturbances occurred mostly over shrubland
(33.06%) and forest (29.56%), but less over meadow
(25.49%).
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Figure 9. The proportional allocation of areas among different vegetation types for different disturbance labels. (A) is the
statistical results of the disturbance for different order of disturbance. (B) is the statistical results of the large-scale disturbance for
different periods.

3.6. The potential agents for the vegetation
disturbance
Among all points, 56.3% of the points induced by
anthropogenic factor, 25% by natural factor, and
18.7% by others. We further chose five typical areas
to inspect the agents (figure 10). Point A was within
the affected region of the Lhasa-Pondo Water Con-
trol Project. The detected disturbances in this area
coincide with the beginning year of the project. The
detailed disturbancemap shows that the timing of the
main disturbances was 2014 and the outline of dis-
turbance points is similar to the shape of the river in
2014. Point B is located between the G219 National
highway and the Lhasa-Nyingchi Railway, and most
disturbances here occurred in 2019. We also found
that the road and the railway were under intens-
ive construction around that year. Point C is located
in the southwest of Nyingchi city, and the disturb-
ances appeared between 2015–2018. The results sug-
gest substantial land use change from vegetation to
other types during the period. Point D is located in
the northwestern Nyingchi near the G318 National
highway. The main disturbances occurred in 2008,
which is attributed to a forest fire. Point E is located at
the eastern fringe of the TP belonging to Wenchuan
County, Sichuan province. A large area of vegeta-
tion was disturbed in 2008, which is reasonable as an
earthquake of magnitude 8.0 named the Wenchuan
Earthquake occurred in this area.

4. Discussion

For the overall disturbance, the timings of the first
and second disturbances in the central of the TP
were earlier than that in the northern and southern
regions of the TP. The range of these earlier disturb-
ances is also similar to that of rangelands of the TP
(Dong and Sherman 2015). Some previous studies
have proved that the rangelands of the central TP have
been overexploited by local pastoralists (Dong et al
2011). Therefore, these earlier disturbances may be
because large areas of grazed grassland (steppe and
meadow) in the central of the TP, and the vegeta-
tion have been disturbed due to the overgrazing in the
early years.

For the large-scale disturbances, it is intriguing
that the disturbance locations were evenly distributed
in the southeastern of the TP before the 21st century,
while the disturbance points were concentrated in the
south of the Yarlung Tsangpo and were sparse in the
north of the Yarlung Tsangpo after the 21st century.

The uniform and wide distribution of the dis-
turbance areas over meadow before 21st century
(figure 8(B)) was probably caused by overgrazing.
Many previous studies have reported that the TP’s
grasslands were under degradation in recent decades
(Wang et al 2005, Dong et al 2013), which might be
largely attributed to a combination of overstocking
beyond carrying capacity and unscientific livestock
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Figure 10. The disturbance map showing the timing of the large-scale vegetation disturbance onset. Red frames indicate the range
of five details in the disturbance map. (A) subset of disturbance map along with the corresponding composite imagery subsets
(RGB= 654) for two timings (one point in time before disturbance occurrence and the other point in time around the
disturbance occurrence) is presented for each detail.

management (Li 1994, Wang 1999). After entering
the 21st century, a range of ecological restoration
projects (e.g. The Grain for Green Project, Grazing
Withdrawal Program, and others) have been enforced
across the TP (Li et al 2016). These projects have
shown their effectiveness in facilitating the restora-
tion of vegetation cover, coincident with the dimin-
ished frequency of the disturbances in the meadow
found in this study (figure 9(B)) and the sparse dis-
tribution of disturbances in the north of the Yarlung
Tsangpo after 2002 (figure 8(C)).

The distribution of the large-scale vegetation dis-
turbances among different vegetation types indicated
that the disturbances occurredmore frequently in the
meadow in the early period, while in the late period,
there is a decreased disturbance in the meadow areas
with an increased disturbance observed in forest and

Table 2. Statistics of different items in Tibet in different years.

Total amount

2000 2005 2010 2015 2020

Hydroelectric
power (108 kWh)

5.54 12.10 15.85 39.51 70.24

Length of
highways (km)

22 503 43 716 60 810 78 348 118 831

Length of rail
lines (km)

0 531 531 786 786

Urbanization
rate (%)

19.47 20.85 22.67 27.74 32.00

shrub areas. The meadow is an important part of the
rangeland on the TP, accounting for 44.64% of the
area (Jian 2002). Therefore, a possible explanation
is that the local economy was highly dependent on
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grazing before the 21st century; however, after the
21st century, local residents became less depend-
ent on livestock husbandry and started to interfere
with the forest and shrub more frequently due to the
increasing demand for wood in the context of urban-
ization. For instance, the Tibet’s industrial structure
has been changing after entering the 21st century: the
ratio of the primary industry has decreased gradu-
ally while an increase in the ratio of the secondary
industry has been observed, showing a pattern with
tertiary in the lead, secondary industry as the middle,
and primary industry as the smallest one; along with
the development of the economy, many labors from
the primary industry have transferred to the other
industries (Tibet Bureau of Statistics 2020).

We further analyzed five typical areas to inspect
the disturbance agents. Main disturbances in five
areas were caused by anthropogenic factors (i.e. the
construction of hydro power station, the construction
of highway and railway, urbanization) and natural
hazards (i.e. forest fire and earthquake). Moreover,
most disturbance sites are found in the triangle area
formed by the Lhasa, Shigatse, and Nyingchi, which
is the most economically active region on the TP in
the 21st century. In general, economic development
is always accompanied by intensive human activit-
ies, such as highway or railway construction, urban
expansion, and water conservancy project. Roads are
one of humankind’s most productive linear infra-
structures, driving habitat transformation directly
(Trombulak and Frissell 2000). Especially, the timings
of disturbances in point B were within the period of
the construction of the G219 National highway and
the Lhasa–Nyingchi Railway, and the vegetation was
therefore more likely be disturbed by these projects.
Li et al (2013) also demonstrated the areas along the
traffic arteries that are exposed to frequent human
activities had suffered severe degradation on the TP.
Many related studies revealed that the impoundment
of the reservoir has a great influence on the growth of
riparian vegetation (Li et al 2015, Botelho et al 2017).
Also, hydropower dams may also fragment habitat,
reduce the distribution of primary vegetation, and
simplify the types of vegetation along the rivers (Li
et al 2012). These factors may explain the occurrence
of concentrative disturbances in point A. As for the
urbanization, although it plays a central role in eco-
nomic growth and social development, it also pro-
foundly alters the physical environment far beyond
city range, leading to habitat loss, vegetation degrad-
ation (Chen 2007). Over the last two decades, Tibet
has been witnessing a dramatic growth of economy
like many other cities in China. As table 2 shows,
there has been a dramatic rise in the number of sev-
eral significant indicators of economic development,
including hydroelectric power, length of highways,
length of rail lines, and urbanization rate. We also
found that there is an increasing trend with the area
of disturbed vegetation each year from 2015 to 2018

when these indicators showed an apparent increase.
These further proved that the growth of vegetation
has been affected by anthropogenic activities to vary-
ing degrees along with rapid economic growth.

Although a high-resolution map of vegetation
disturbance was obtained, there are still some limit-
ations regarding the data and method. Firstly, cloud
cover was an inherent issue over the TP, especially
in the southeastern TP (figure 3). In contrast to the
conterminousUnited States, the data density of Land-
sat archive in the TP is so far substantially lower
(Wulder et al 2016). These factors considerably limit
the acquisition of cloud-free Landsat observations,
which further increases the difficulties for extracting
accurate disturbance information from time-series
datasets. Multisensor analysis may potentially alle-
viate data density issues but could also introduce
uncertainties during the data fusion process (Roy
et al 2016). Secondly, we were not able to distin-
guish the disturbance agents for all individual dis-
turbance patch, because there were not adequate
agent-specific training data. Future work is warran-
ted to develop disturbance agent algorithms and map
products, which will provide a more comprehensive
examination of disturbance drivers for the TP region.
Despite these limitations, this work provides import-
ant baseline disturbance information, which laid a
solid foundation for further investigating the rela-
tionship between vegetation growth and anthropo-
genic activities over the last decades across the TP in
future.

5. Conclusion

In this study, the spatiotemporal patterns of veget-
ation disturbance across the TP were investigated
based on the LandTrendr algorithm using 30m Land-
sat archives for the period of 1986–2018. The res-
ults demonstrated that the disturbances in vegetated
land have been existing in the context of vegetation
greening across the TP over the last decades. Dur-
ing 1986–2018, 75.71 M ha (accounting for 29.34%
of TP’s area) of vegetated area was disturbed, of which
8.44 M ha area experienced large-scale disturbances.
The disturbances were dominated in meadow areas,
largely attributed to a combination of overstocking
and livestock mismanagement before 2002. Along
with the implementation of several policies regard-
ing ecology conservation around 2002, the disturb-
ances in the meadow have diminished. Instead, most
vegetation disturbances were gathered in the south
of the Yarlung Tsangpo after 2002 which was mainly
induced by anthropogenic activities such as urban-
ization, the construction of roadways and railway,
fire hazards, and water control projects. These emer-
ging threats may bring about unexpected changes in
TP’s ecology in the future. Our work provides critical
insights into vegetation variation over the TP during
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the past 40 yr, which are essential for development
planning and environmental management.
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