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Spatiotemporal co-optimization of 
agricultural management practices towards 
climate-smart crop production

Liujun Xiao    1,2, Guocheng Wang3, Enli Wang    4, Shengli Liu5, Jinfeng Chang    1, 
Ping Zhang    1, Hangxin Zhou1, Yuchen Wei1, Haoyu Zhang1, Yan Zhu2, 
Zhou Shi    1 & Zhongkui Luo    1 

Co-optimization of multiple management practices may facilitate 
climate-smart agriculture, but is challenged by complex climate–crop–soil 
management interconnections across space and over time. Here we develop 
a hybrid approach combining agricultural system modelling, machine 
learning and life cycle assessment to spatiotemporally co-optimize fertilizer 
application, irrigation and residue management to achieve yield potential of 
wheat and maize and minimize greenhouse gas emissions in the North China 
Plain. We found that the optimal fertilizer application rate and irrigation 
for the historical period (1995–2014) are lower than local farmers’ practices 
as well as trial-derived recommendations. With the optimized practices, 
the projected annual requirement of fertilizer, irrigation water and residue 
inputs across the North China Plain in the period 2051–2070 is reduced 
by 16% (14–21%) (mean with 95% confidence interval), 19% (7–32%) and 
20% (16–26%), respectively, compared with the current supposed optimal 
management in the historical reference period, with substantial greenhouse 
gas emission reductions. We demonstrate the potential of spatiotemporal 
co-optimization of multiple management practices and present digital 
mapping of management practices as a benchmark for site-specific 
management across the region.

Optimizing agricultural management practices has the potential to sup-
port sustainable agricultural intensification1,2. For example, integrated 
soil–crop system management experiments in China had improved 
fertilizer management with enhanced yields of major crops and reduced 
greenhouse gas (GHG) emissions2,3. These field-based experiments 
provide in situ data and promote mechanistic understanding of crop–
environment management interactions, but are limited to specific loca-
tions and management practices. For multiple management practices  

(for example, fertilizer application, irrigation and crop residue manage-
ment), considering their nonlinear interactions and connections with 
local soil and climate dynamics4,5, it is difficult to target the optimal 
management combination by conducting field experiments and to 
generalize field-scale observations from limited locations1.

Agricultural management practices interact with local climatic and 
edaphic conditions to determine crop production and the relevant GHG 
emissions1. Irrigation and fertilizer applications, the two most common 

Received: 24 February 2023

Accepted: 7 November 2023

Published online: 2 January 2024

 Check for updates

1College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China. 2National Engineering and Technology Center for Information 
Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, 
Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, 
Nanjing Agricultural University, Nanjing, China. 3Faculty of Geographical Science, Beijing Normal University, Beijing, China. 4CSIRO Agriculture and Food, 
Canberra, Australian Capital Territory, Australia. 5School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.  e-mail: luozk@zju.edu.cn

http://www.nature.com/natfood
https://doi.org/10.1038/s43016-023-00891-x
http://orcid.org/0000-0002-1900-1586
http://orcid.org/0000-0002-6653-5791
http://orcid.org/0000-0003-4463-7778
http://orcid.org/0000-0002-0044-8361
http://orcid.org/0000-0003-3914-5402
http://orcid.org/0000-0002-6744-6491
http://crossmark.crossref.org/dialog/?doi=10.1038/s43016-023-00891-x&domain=pdf
mailto:luozk@zju.edu.cn


Nature Food | Volume 5 | January 2024 | 59–71 60

Article https://doi.org/10.1038/s43016-023-00891-x

randomly selected locations under management scenarios with com-
binations of different levels of N input, irrigation water and residue 
retention (6,000 site-management simulations in total, Fig. 1). The 
simulations were conducted at a daily time step from 1981 to 2070. Daily 
future climate data were obtained by running general circulation mod-
els (GCMs) forced by historical daily climate records under two shared 
socio-economic pathways (SSPs; SSP2-4.5, the intermediate pathway 
of future GHG emissions, and SSP5-8.5, the most extreme pathway of 
future GHG emissions) and downscaled to the spatial resolution of 
0.0083° (Supplementary Fig. 4 and Methods). Then, machine learning 
models (MLs) were trained against the simulation results to reproduce 
APSIM projections of crop yield, SOC dynamics and N2O emissions  
(Fig. 1 and Supplementary Fig. 5). The best ML—eXtreme Gradient Boost-
ing (XGBoost)—was selected as the emulator of APSIM, which explains 
more than 96% of the variance of APSIM outputs (Supplementary Fig. 5) 
and captures main controls over the outputs (Supplementary Figs. 6–8).

Management practices were optimized to meet the target using 
a multi-objective optimizer during three periods (Methods), that is, 
1995–2014 (historical reference period), 2021–2040 (near future) and 
2051–2070 (distant future). Specifically, we conduct a multi-objective 
optimization including (1) at least 90% of maximum yield potential 
of both wheat and maize (which acknowledges that the 100% yield 
potential would actually never be achieved due to other constraints 
such as pest and disease and substantial diminishment of economic 
return above this figure16), (2) maximum SOC, (3) minimum net GHG 
emissions, (4) minimum N input, (5) minimum irrigation water and (6) 
minimum residue retention. The optimized management practices 
were compared to local farmers’ actual practice and to field trial-based 
recommendations (Methods).

Crop yields and their responses to climate change
In the historical reference period 1995–2014, the optimized wheat yield 
is 7.286.5 Mg ha–1 (mean with range across the region) across the NCP 
(Figs. 2a and 3a). Projected maize yield (8.19.76.8  Mg ha–1) is generally 
higher than wheat yield but with larger spatial variability (Fig. 2a versus 
2b and Fig. 3b). The highest maize yield is projected in northeast NCP 
(Fig. 2b). Optimized wheat yield is higher than recorded wheat yield 
by local farmers as well as higher than the achieved yield by field exper-
iments across the study region (Fig. 3a). For maize yield, it is generally 
close to both local farmers’ records and the achieved yield by field 
experiments (Fig. 3b).

Yield potential is defined as the yield of a cultivar when grown in 
environments without nutrients and water limitations. Under future 
climate change, maize yield potential is continuously decreased by 
up to 11.2–19.3% in the distant future compared with that during the 
historical reference period, while wheat yield potential remains rela-
tively stable regardless of emission scenarios and climate projection 
models (Supplementary Figs. 9 and 10). Similar pattern of maize and 
wheat yield was projected under the optimal management (Figs. 2a,b 
and 3a,b). For maize, specifically, average yield across the region is 
reduced to 7.3 (that is, −10%) and 6.9 Mg ha–1 (−15%) in the near (that is, 
2021–2040) and distant future (that is, 2051–2070) under SSP2-4.5, 
respectively, compared with historical yield. A little more yield losses 
of maize are projected under SSP5-8.5 (Fig. 3b).

SOC dynamics and net GHG emissions
In the historical reference period, NCP soils are carbon sinks at a rate 
of 0.480.62

0.30 Mg ha–1 per year (Figs. 2c and 3c), which is comparable to 
field observations during a similar period (Fig. 3c) and other estima-
tions in the same region17. However, the average SOC sequestration 
rate will slow down to about 0.2 Mg ha–1 per year in the period 2021–
2040 (Fig. 2c), confirming decline SOC accumulation after a relatively 
long-term crop residue return13. In the distant future (2051–2070), 
most NCP soils are projected to be close to carbon neutral, that is, reach-
ing their carbon sequestration potential (Figs. 2c and 3c).

practices to ensure high yield, affect almost all soil biogeochemical 
processes including GHG emissions6. Field studies have found syner-
gies and trade-offs between multiple targets (for example, yield versus 
GHG emissions) under different management practices2,7. High yields 
usually rely on extensive use of fertilizer and irrigation water that, if 
not properly managed, may lead to high GHG emissions8. For example, 
experimental results in the North China Plain (NCP) indicated that total 
nitrogen application rate in wheat–maize double cropping system can 
be reduced from 600 to 330–420 kg ha–1 per year and irrigation can be 
reduced by 240–350 mm ha–1 per year with much less GHG emission 
without scarifying yield, but large uncertainties in such management 
exist among sites due to the variation of climate and soil conditions7.

Crop residue retention is another management focus for enhanc-
ing soil fertility and soil organic carbon (SOC) accumulation and 
thereby mitigating climate change9. However, SOC accumulation 
under more crop residue retention may require additional nutrient 
inputs to keep soil stoichiometric balance10. Excessive crop residue 
retention may break the stoichiometric balance, stimulate emissions of 
nitrogenous gases such as N2O11 and thereby offset SOC accumulation 
and even reduce crop yield12. A synthesis of 176 long-term experiments 
showed that continuous crop residue retention on average is only effec-
tive for SOC accrual at the first 12 years13. Furthermore, future climate 
change affects crop growth, soil water and nutrient dynamics involving 
complex interactions between them. The management combinations 
of irrigation, fertilization and crop residues in theory should be also 
adapted to such climate change-induced crop growth-management 
feedbacks that, however, have been rarely assessed simultaneously10, 
particularly across large geographic regions and under long-term 
climate change conditions14.

In this article, we develop a hybrid approach combining biophysi-
cal agricultural system modelling, machine learning, life cycle assess-
ment and multi-objective optimization techniques to derive optimal 
management combinations across space and over time (Fig. 1 and 
Methods). We first verify a widely used agricultural system model, the 
Agricultural Production System sIMulator (APSIM, Supplementary  
Fig. 1)15, to simulate crop productivity and environmental impacts 
under various climatic, soil and management conditions (across the 
NCP in this study—the ‘food bowl’ of China and a key area of global 
wheat and maize production, Supplementary Fig. 2). Then, machine 
learning emulators are trained to reproduce APSIM outputs (that is, 
wheat and maize yield, SOC changes and GHG emissions in this study) 
to facilitate high-resolution optimization and prediction across the 
region, which is otherwise difficult using the APSIM model alone. 
The best emulator is selected and combined with an evolution-based 
multi-objective optimizer to derive optimal management practice 
combinations (nitrogen (N) application, irrigation and residue man-
agement; Methods) to achieve at least 90% of maximum yield (which 
is defined as the yield without water and nutrient limitations) with 
minimum net GHG emissions (which take into account SOC changes 
and direct and indirect GHG emissions; Methods). In addition, we com-
pare changes in the derived best management practices under both 
historical and future climate conditions to assess the effects of future 
climate change on the spatiotemporal dynamics of management, crop 
yield, SOC and net GHG emissions and to identify controlling factors 
over the potential spatiotemporal variability of optimized manage-
ment practices.

Results
Model performance and simulation framework
The APSIM model explained 85%, 72%, 85% and 75% of the variances of 
the four variables (that is, wheat and maize yield, SOC dynamics and 
soil N2O emissions) observed in field experiments across the region, 
respectively (Supplementary Fig. 3). Using the verified APSIM model, 
we simulated a winter wheat–summer maize double cropping rota-
tion system—the dominant cropping system in the study region—at 
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In the historical reference period, GHG emissions (which include 
direct N2O emissions caused by N fertilizer production and applica-
tion, electricity usage for irrigation and residue retention and indi-
rect N2O emissions from N volatilization and leaching, but do not 
include SOC changes that are considered separately; Methods) are 

estimated to be 8.010
6.0  Mg CO2-eq ha–1 per year across the region 

(Supplementary Fig. 11). The majority of GHG emissions (76%) are 
attribute to agricultural inputs (that is, fertilizer production and 
electricity for irrigation application), while the contribution of indi-
rect N2O emissions and residue chopping is relatively small 
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Fig. 1 | A simulation framework enables spatiotemporal optimization of multiple management practices. The framework combines verification of biophysical 
models, machine learning, life cycle assessment and multi-objective optimization to derive the best management combination across space and over time under 
targets of interests.
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Fig. 2 | Spatial pattern of yield, SOC changes (ΔSOC), net GHG emissions and 
optimized management practices under the target of maximizing yield and 
minimizing GHG emissions. a−d, Panels from top to bottom show the projected 
annual average yield of wheat (a) and maize (b), ΔSOC (c), net GHG emissions 
(d), N input (e), irrigation amount (f) and average residue retention fraction 

(g), respectively, during the historical (1995–2014) and future periods (2030s: 
2021–2040 and 2060s: 2051–2070) under two shared SSPs (SSP2-4.5 and SSP5-
8.5). The value of each grid cell in the future periods shows the ensemble mean of 
all climate models. The rightest panels show the relevant latitudinal pattern.
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(Supplementary Fig. 11). This estimation of GHG emissions is much 
lower than estimates based on local farmers’ practices, but compa-
rable to estimates of field experiments (Fig. 3d). In the future, GHG 
emissions will decrease regardless of emission scenarios (Fig. 3d) 
due to decreased yield potential and consequently reduced require-
ment of fertilizers and irrigation water (see results below). SOC 
sequestration only plays a minor role in mitigating such GHG emis-
sions in the future (Supplementary Fig. 11). As such, net GHG emis-
sions (GHG emission − SOC change) across the region are close to 
total GHG emissions and are projected to be 6.38.04.4  Mg CO2-eq ha–1 
per year (Figs. 2c and 3e). In the future, due to synchronously 
decreased SOC sequestration rate with time (Fig. 3c), net GHG emis-
sions are relatively stable during the whole simulation period  
(Fig. 3e), albeit GHG emissions are also reduced (Fig. 3d).

Spatiotemporal pattern of optimal management practices
Across the region in the reference period, much more N is required at 
higher latitudes (Fig. 2e). The optimized N application rate for wheat 
and maize is 190239

138  and 168199
131  kg ha–1, respectively. These estimates 

are much lower than local farmers’ use of 246302
179  and 234253

132  kg ha–1 
during the similar period, respectively (Fig. 4a,b). Compared with the 

recommended N application rate by field experiments conducted in 
the NCP (Methods), we predict a similar rate for wheat but much lower 
rate for maize (Fig. 4a,b). Under future climate change, less N, particu-
larly for maize, is required (Fig. 4a,b) due to the negative effect of cli-
mate change on yield potential (Supplementary Figs. 9 and 10).  
In addition, the apparent latitudinal gradient of N requirement  
in the reference period narrows in general under future climate  
conditions (Fig. 2e).

Much more irrigation is required at higher latitudes across the 
region (Fig. 2f). In contrast to N input, this latitudinal gradient persists 
in the future (Fig. 2f versus 2e). Across the region, the irrigation amount 
is projected to be 20232580  mm for wheat and 104162

27  mm for maize in the 
reference period, and is also lower than local farmers’ average practice 
of ∼300 mm for wheat and ∼151 mm for maize, but comparable to 
recommended amount by field experiments (Fig. 4c,d). In the future, 
the required irrigation water amount for wheat is substantially reduced 
by more than 20% depending on climate scenarios, while irrigation 
required for maize is slightly increased, particularly in the distant future 
under SSP5-8.5 (Fig. 4c,d). It should be highlighted that, if using the 
management practices optimized for the historical reference period 
in the future, it will result in much more GHG emissions in the two future 
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periods (+8% and +13% on average, respectively, Fig. 3c,d), albeit a small 
yield benefit for wheat (Fig. 3a).

It is intriguing to note that the optimal residue retention fraction 
is not 100% (that is, retaining all residues, Fig. 2g). This may be because 
residue retention stimulates SOC sequestration, but, on the other 
hand, it increases N2O emissions (Supplementary Figs. 7 and 8). Thus, 
residue management should consider the trade-offs between SOC 
accrual and N2O emissions. Averaging across the region, the optimized 
residue retention fraction is 85% for wheat and 93% for maize, which 
are slightly higher than local farmers’ practice (which is 68% for wheat 
and 85% for maize, Fig. 4e,f). The optimized fraction of maize residue 
retention is generally higher than that of wheat in the whole simula-
tion period regardless of climate scenarios. In the near future, optimal 
wheat residue retention fraction is decreased by 7.2% under SSP2-4.5 
and 9.2% under SSP5-8.5, while maize residue retention keeps relatively 
stable. In the distant future, however, the retained fraction of wheat 
and maize residues consistently shows a decreasing trend under both 
SSP2-4.5 and SSP5-8.5 (Fig. 4e,f).

Drivers of the optimal management
Linear mixed-effects regression is conducted to test the effects of envi-
ronmental factors on each optimized management practice treating 

simulation period (that is, historical reference period, near future and 
distant future) as a random effect (Methods and Fig. 5). Averaging across 
the simulation periods, the effects of mean annual temperature (MAT) 
and mean annual precipitation (MAP) on wheat-season irrigation are 
significantly negative and the strongest (Fig. 5a). The magnitude and 
direction of the effects of the assessed variables vary among the man-
agement practices. Some variables showed significant effects on par-
ticular management practices, but insignificant on other practices 
(Fig. 5a). Among the simulation periods, the effects of the assessed 
variables on all management practices are significantly different  
(Fig. 5b,d). Overall, these results indicate that the effects of differ-
ent variables on management practices are time dependent (Fig. 5). 
In addition, management practices are closely correlated to each 
other regardless of averaging across the three periods or during each 
simulation period (Fig. 5). It is intriguing to note that the strongest 
association occurs between maize-season N input and wheat-season 
irrigation for wheat–maize rotation, particularly in the two future  
periods (Fig. 5a,c,d).

Due to the complex associations of management practices with 
environmental variables (Fig. 5), we conduct a variance partitioning 
analysis (VPA) to explore the overall influence of the assessed envi-
ronmental variables (with the consideration of their interactions) 
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Fig. 4 | Distributions of optimized management practices under the target 
of maximizing yield and minimizing GHG emissions across the study 
region (that is, the NCP). a−f, Historical and projected annual wheat N input 
(a) and maize N input (b), wheat irrigation amount (c), maize irrigation amount 
(d), wheat residue retention (e) and maize residue retention (f). Historical 
projections (1995–2014) were compared with farmers’ practices and field 
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available). Future projections include two periods: 2030s (2021–2040) and 
2060s (2051–2070) with climate projected by six climate models under SSP2-4.5 
and SSP5-8.5. Boxplots show the median and interquartile range, with whiskers 
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in influencing optimal management practice combinations across 
the region (Methods). The VPA explains 65% of the variance of opti-
mal management combinations (Supplementary Fig. 12). The inter-
action between water-related factors (that is, MAP and potential 
evapotranspiration and temperature-related factors (that is, MAT 
and mean annual radiation (MAR)) is the most important individual 
factor, alone explaining 17.7% of the total variance. Water-related fac-
tors, the interaction between water-related factors and soil proper-
ties and soil properties explain 11.9%, 9.7% and 8.6% of the variance, 
respectively. Other variables or interactions explain less than 3% of 
the variance (Supplementary Fig. 12). Overall, water-related factors 
are the predominant factor. Their individual effects and sharing in 
their interactions with other variables together explain 29.3% of the 
variance (that is, accounting for 45% of the total explained variance), 

followed by soil properties (14.3%) and temperature-related factors  
(13.7%, Supplementary Fig. 12).

Discussion
Crop type-dependent response of yield to climate change
Our results suggest that maize is more vulnerable to future climate 
change than wheat in the NCP, which has been also found in other 
regions18. For wheat, the reason may be that, although winter warm-
ing poses a negative effect on wheat growth19, this can be offset by 
fertilization effect of elevated CO2

18. It is also general that elevated CO2 
has a weaker fertilization effect on the growth of C4 plants like maize 
than C3 plants like wheat20. However, the positive fertilization effect 
of elevated CO2 on plant growth will be saturated if CO2 concentration 
increases to certain level in the future20. Moreover, summer maize is 
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very sensitive to summer high temperature that is closely associated 
with heatwaves and drought21 and common in summer under global 
warming (Supplementary Fig. 4). We propose that careful selection of 
cropping systems including crop type and their rotation may have the 
potential to alleviate the negative effect of climate change22.

Optimal management practices over time and space
Optimizing management practices with time saves water and fertiliz-
ers and thus reduces relevant GHG emissions under future climate 
change. We projected much higher productivity per unit N and water 
use than local farmers’ practice and field experiment-based recom-
mendations (Supplementary Fig. 13). This implies the importance of 
fertilization time for improving nutrient use efficiency2,7,23. As irrigation 
and fertilization are the major contributors to total GHG emissions, 
reduced fertilizer and water inputs could substantially reduce GHG 
emissions, offsetting the decline of SOC sequestration rate (that is, 
SOC saturation)24.

Our results confirm that NCP soils were a carbon sink in history17. 
However, this value cannot be maintained even in the near future  
(2021–2040) as soils gradually reach their SOC sequestration poten-
tial. The optimized amount of crop residue retention was projected 
to reduce in the future because more residue inputs contribute less 
to SOC sequestration due to SOC saturation12,24, but stimulate soil N2O 
emissions23 and induce other constraints such as limiting seed germina-
tion. The optimum retention fraction depends on the total amount and 
type of residues, soil properties and climate conditions9. Indeed, our 
simulations predict large spatial variability of the optimal retention 
fraction across the study region (Fig. 2g). Although crop residue reten-
tion may have positive effects on overall soil health9, our modelling 
results highlight that residue retention would be a double-edged sword.

Optimal management practices are strongly associated with 
both climatic and edaphic conditions. Despite water-related factors  
(for example, MAP and evapotranspiration) and temperature-related 
factors (MAT and MAR) being the most important factors influencing 
optimal management combinations, soil conditions may play a vital 
role in regulating water and nutrient availability for plant growth and 
may therefore be the relevant management practices. In the NCP, 
as an alluvial plain that has experienced thousand years of cultiva-
tion, soil conditions are relatively homogeneous but still show simi-
lar magnitude of importance as climate. Indeed, this importance is 
under-recognized25,26 and needs to be further elucidated particularly 
in terms of buffering environmental influences.

Limitations and recommendations
Some limitations remain in our simulations. First, the quality of spatial 
data that are required for process-based modelling is usually difficult 
to control. Especially, we emphasize that accurate three-dimensional 
soil data such as vertical distribution of soil nutrients and water hold-
ing capacity along soil profile will be invaluable for understanding 
soil–plant management interactions. Second, although process-based 
models like APSIM depict key processes regulating agricultural system 
dynamics in response to management and environment, they have 
their own deficiencies due to imperfect understanding of relevant pro-
cesses. For example, few models, if not none, have verified their ability 
to simulate the effects of extreme climate (such as high-temperature 
impact on pollination and seed set and so on) and the role of soil in 
buffering environmental influences27. Third, we used the same wheat 
and maize cultivars during the whole simulation period and thus did 
not consider climate adaptation offered by crop genetic potential28. 
Gene-driven breeding may enable new varieties with a higher yield 
potential and increased water and nutrient use efficiency29, thereby 
reducing water and nutrient requirements and finally reducing GHG 
emissions. By adopting genetically modified cultivars with higher 
yield potential would change management practices, which need to 
be explicitly explored in future work.

Our results demonstrate the great potential of co-optimizing 
multiple management practices for securing crop production with less 
resource input and environmental costs. To promote the implementa-
tion of such optimized management practices, we suggest the three 
aspects of actions in terms of scientific research, farmer engagement 
and government policy. First, national and international multidiscipli-
nary research network is needed to comprehend the complex processes 
and interactions between climate, soil, crops and management, to 
holistically and fully realize the potential of sustainable agriculture 
and to develop effective site-specific solutions30. Agricultural system 
models (for example, APSIM) integrating climate–plant–soil manage-
ment interactions can play an important role, facilitating mechanistic 
understanding and the derivation of management practices and future 
response at the spatiotemporal resolution meaningful for farmers’ 
practice31. Second, it needs to effectively engage and persuade farm-
ers, particularly smallholders like in the NCP and China, who usually 
receive less education and restricted access to innovative solutions and 
practices and are more vulnerable to economic variability. Involving 
local farmers and communities in the identification and confirmation 
of the optimal practices will build up farmers’ successful experience 
and thus confidence and willingness to adopt the practices. The Science 
and Technology Backyard in China is a successful example of unlocking 
the potential of smallholder farmers32. Finally, but not less important, 
by offering financial and market incentives, subsidies, grants and sup-
portive policies, government can act as a bridge to connect and support 
scientific research and farmers’ implementation. For example, China’s 
14th 5-year plan promotes the investment of national field experiment 
network and implementation of smart agriculture practices33, which 
will promote the study of sustainable agriculture and the implementa-
tion of the best practices.

Conclusion
Co-optimization of multiple management practices is challenging 
via field experimental approaches due to complex climate–soil–crop 
management interactions that highly vary across space and over time. 
We propose a modelling framework to explore such spatiotemporal 
variabilities and derive optimal management practice combinations for 
climate-smart agricultural intensification. Applying the framework in 
the NCP, the simulation results suggest great potential of saving ferti-
lizer and water resources and reducing GHG emissions without sacrific-
ing much yield in the NCP under future climate conditions. Importantly, 
future management practices should be adjusted with climate change 
as yield potential would be damaged by future climate if not using 
cultivars adapted to climate change, and thus less resource input is 
required. Overall, co-optimization of multiple management practices 
can enhance our ability to secure environmentally friendly food pro-
duction under climate change. Together with advancing crop breeding 
techniques, the expediting accumulation of three-dimensional soil 
data and the improving understanding and modelling of plant–soil 
interactions are paving the way for climate-smart agricultural produc-
tion under smart management across space and over time.

Methods
We develop a framework combining biophysical models, life cycle 
assessment, machine learning and multi-objective optimization 
techniques to co-optimize multiple management practices at spati-
otemporal resolutions meaningful for land management (Fig. 1). The 
framework is applied to a typical region—the NCP—in China to identify 
optimal management practice combinations to achieve an integrated 
target of maximizing yield and SOC sequestration and minimizing 
GHG emissions.

The study region
The NCP (Supplementary Fig. 2, the boundary is consistent with ref. 
31) is the largest agricultural production region in China, producing  
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∼33% and ∼60% of China’s maize and wheat, respectively34. The domi-
nant cropping system in the region is irrigated winter wheat–summer 
maize double cropping rotation with an average growing season from 
October to June for wheat and from June to September for maize35. 
The NCP is a region characterized by a summer monsoon climate. The 
MAT in the region ranges from 11 °C to 17 °C and MAP from 461 mm to 
1,033 mm during the period 1995–2014. In NCP, to maintain high yield, a 
large amount of groundwater is exploited for irrigation with an annual 
average usage of 400–450 mm (70% used for wheat) in the past dec-
ades, resulting in groundwater depletion. The average N fertilizer usage 
of local farmers is ∼246 kg N ha−1 per year for wheat and ∼234 kg N ha−1 
per year for maize (Fig. 4). However, the use efficiency is low with a value 
of less than 30%, causing a series of environmental problems relating 
to N pollutions and GHG emissions36. Excessive resource (for example, 
nitrogen and water) consumption and intensive cultivation result in 
soil degradation, challenging sustainable agricultural intensification 
in NCP8. Optimizing management practices to sustain crop produc-
tion, maintain soil health and minimize associated environmental 
footprints in the NCP has become a priority of both the regional and 
national central government.

Climate and soil datasets
Daily historical meteorological data at ∼2,400 climate stations across 
China (including 318 stations in NCP), including maximum tempera-
ture, minimum temperature, precipitation, sunshine hours, relative 
humidity and wind speed, were obtained for the period 1981–2014 
from the Chinese Meteorological Administration (http://data.cma.cn). 
Daily solar radiation required by the APSIM model (see the ‘The APSIM 
model’ section) was calculated by daily sunshine hours. We employed 
a statistical downscaling approach combing with the thin plate spline 
regression method and machine learning (using R package machisplin 
for R v4.0.5)37 to interpolate the observed meteorological data to the 
whole country at the resolution of ∼1 km (0.0083°). Spatial climate data 
in the NCP, which is required for regional simulations, were extracted 
from the downscaled national mapping products.

Daily climate during the period from 2015 to 2070 was pro-
jected by six GCMs (including BCC_CSM2_MR, HadGEM3_GC31_LL, 
FGOALS-g3, IPSL_CM6A_LR, GFDL_ESM4 and MIROC6; Supplemen-
tary Table 1) participating in the Coupled Model Inter-comparison 
Project phase 6 (CMIP6)38, under two shared SSPs. The shared SSPs 
are represented by SSP2 with RCP4.5 (here SSP2-4.5) and SSP5 with 
RCP8.5 (here SSP5-8.5). They were selected as the intermediate and 
the most extreme anthropogenic radiation forcing increases39, 
respectively. We used the historical climate data during the period 
1981–2014 to bias-correct CMIP6 climate model outputs based on 
the ISIMIP3b method40 and downscaled the projected future climate 
using the same approach for downscaling historical data. During the 
period 2015–2070, the results indicate that mean temperature and 
precipitation are increased by 1.7–2 °C and 15.6–15.8% in the wheat 
growing season (that is, from October to June), respectively, and by 
1.7–2 °C and 17.2–18.2% in the maize growing season (that is, from June 
to September), respectively, depending on GCMs (Supplementary 
Table 1 and Supplementary Fig. 4). Future atmospheric CO2 concen-
tration used in CMIP6 for SSP2-4.5 and SSP5-8.5 (Supplementary  
Fig. 4) has also been obtained to model the fertilization effect of CO2 
on plant growth.

Soil data in the NCP were obtained from the China Soil Scien-
tific Database41 at the same resolution of climate data (that is, ∼1 km), 
which was generated on the basis of more than 7,000 soil profile 
measurements in the late 1970s/early 1980s across China and is the 
most comprehensive soil data available. Major soil properties include 
SOC content, total nitrogen content, bulk density, clay fraction,  
pH, saturated water content and drained upper limit and lower limit  
of crop water extraction in different soil layers down to 2.5 m, which 
are required to drive the APSIM model.

Observational data for model verification
We conducted a literature search to collect data about yield and rel-
evant application of N fertilizers, irrigation amount and residue reten-
tion (Supplementary Table 2 and Supplementary Data). A total of  
307 observations including 108 values of N fertilizer use from 33 stud-
ies, 182 values of irrigation water use from 38 studies and 17 values of 
residue retention fraction from 7 studies were obtained. The obser-
vational practices can be divided into two general types: local farm-
ers’ actual practice and field experiment-based recommendation of 
management practices. We calculated the N productivity and irrigation 
productivity (Supplementary Fig. 11) as the ratio of yield to correspond-
ing N input and irrigation amount. All data have been grouped into two 
types (that is, local farmers’ practice and field-based recommenda-
tion) and compared with model projections in the similar period at 
the regional level. In addition, we extracted data from 12 long-term 
agricultural trials from 11 studies on long-term SOC changes and 17 
from 6 studies on N2O and GHG emission with current local farmers’ 
conventional and recommended management practices for winter 
wheat–summer maize system during 1980–2017 in the region studied.

In addition, we collected data from nine long-term agricultural 
trials conducted in the NCP as a part of the National Long-term Ferti-
lization Experimental Network in China42. Specifically, all trials focus 
on the winter wheat–summer maize rotation system under different 
management treatments. We extracted data of crop yield, SOC and N2O 
emissions to validate the performance of the APSIM model on predict-
ing these variables (Supplementary Fig. 2). More detailed information 
on the nine long-term trials are described in Supplementary Table 3.

The APSIM model
The APSIM15 was used to simulate climate–plant–soil interactions 
and impact of management intervention on a daily time step using 
daily climate generated by the six climate models under two shared 
SSPs (that is, a total of 12 climate scenarios). The model simulates 
plant phenological development from sowing to maturity in response 
to temperature, vernalization (wheat) and photoperiod. Daily plant 
growth is simulated using plant development stage-dependent radia-
tion use efficiency constrained by temperature, water and nitrogen 
availability. Soil organic matter is divided into four pools distinguished 
by decomposability, namely, fresh organic matter (FOM), microbial 
biomass, humus and an inert organic matter pool43. The decomposition 
of FOM, microbial biomass and humus is defined as a first-order decay 
process modified by temperature, moisture and nutrient availability 
and results in the release of CO2 to the atmosphere and transfer of the 
remaining decomposed carbon to other pools44. The flows between 
different pools are calculated in terms of carbon. The corresponding 
N flows depend on the carbon flow into the receiving pool and its C:N 
ratio. The C:N ratios of various pools except FOM were assumed to be 
constant through time. APSIM simulates direct N2O emissions from 
both nitrification and denitrification processes45. The N2O emission 
from the nitrification process is estimated as a fraction of nitrified N, 
with the latter modelled by Michaelis–Menten kinetics treating soil 
ammonium as the substrate, and modified by soil pH, soil moisture 
and temperature. Denitrification-induced N2O emission is calculated 
by multiplying the denitrification rate by the ratio of N2 to N2O emitted 
from denitrification adopted from the DayCent model45. In addition, 
APSIM allows flexible specification of management practices such as 
crop and rotation type, sowing and harvesting rules, fertilizer applica-
tion, manure application, irrigation and residue management.

The ability of APSIM to simulate yield, soil carbon and nitrogen 
dynamics together with other processes in response to management 
practices have been comprehensively verified worldwide31,46. In the 
NCP, specifically, APSIM parameters have been widely calibrated 
and verified to simulate various aspects of wheat–maize cropping 
system (which is the target system of this study) at different sites in 
previous studies47. Cultivar parameters of wheat and maize and model 
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parameters relating to soil organic matter dynamics, nitrification and 
denitrification have been carefully validated in the NCP in our previ-
ous studies31,47. We further verified the ability of the APSIM model in 
simulating yield, SOC dynamics and N2O emissions using collected 
from nine long-term trials as described above (Supplementary Fig. 3).

Hybrid simulations combining APSIM and machine learning
We simulated the common winter wheat–summer maize rotation sys-
tem at ∼1 km resolution across the NCP croplands (a total of ∼4.4 × 105 
grid cells) using a hybrid approach of combining the APSIM model and 
machine learning-based emulators of APSIM outputs (Fig. 1). First, the 
APSIM model was run for the period 1981–2070 under scenarios of N 
application, irrigation, crop residue management, climate change and 
their combinations. As our purpose is to identify the optimal manage-
ment, we built fine-tuning scenarios. Specifically, the N application 
scenario ranges from 0 to 400 kg N ha–1 per year for each crop season 
with an increment of 1 kg N ha–1 per year. If the N application was less 
than 30 kg N ha–1, 100% of N was applied as a basal fertilizer application 
at the time of sowing for both crops; if it was greater than 30 kg N ha–1, 
40% of the total N was applied as base fertilizer and any additional N 
was being applied at the stem elongation of wheat and leaf appearance 
stage of maize as a top dressing. For all scenarios, other nutrients (for 
example, phosphorous and potassium) are assumed to be efficient and 
do not limit crop growth. Irrigation scenario includes no irrigation; 
one (at sowing time), two (additional irrigation at floral initiation), 
three (additional irrigation at flowering) and four times (additional 
irrigation at the start of grain filling) of irrigation (irrigated to the field 
capacity in the top 50 cm soil); and auto-irrigation (that is, irrigating 
once soil water content drops to drained lower limit). Crop residue 
management ranges from 0% to 100% removal with an increment of 5% 
for both wheat and maize. Climate scenarios include the combinations 
of the six GCMs and the two SSPs. In total, there are ∼1.0 × 1014 manage-
ment–climate scenario combinations, which is impossible to simulate 
using the APSIM model in a reasonable time for all grid cells. To solve 
this computational challenge, 6,000 grid scenarios were randomly 
drawn to run the APSIM model. That is, for each drawing, one grid and 
one management–climate scenario were randomly selected from the 
∼4.4 × 105 grids and ∼1.0 × 1014 management–climate scenarios, respec-
tively. The 6,000 random samples are almost evenly distributed across 
the NCP and can well represent the population of scenario combina-
tions including all scenario possibilities. APSIM-projected SOC in the 
whole soil profile (that is, 0–2 m), wheat and maize yield and soil N2O 
emissions were output. Average annual SOC change (ΔSOC), crop yield 
and N2O emissions during the period 1995–2014 (as the historical refer-
ence period), 2030s: 2021–2040 (represents near future) and 2060s: 
2051–2070 (represents distant future) were calculated.

Then, we trained six types of ML driven by three categories of 
predictors (that is, soil, climate and management; Supplementary 
Table 4) to emulate APSIM-projected ΔSOC, average yield and N2O 
emission during the three periods. The six MLs are generalized linear 
model with lasso penalty (GLMNET), support vector machines, random 
forest, XGBoost, multilayer perceptron neural network and convolu-
tional neural network. For climate variables, to reflect their temporal 
variability and effects on the development of crops, we first calcu-
lated the three-hourly temperature for each day using daily maximum 
and minimum temperatures27. Using the three-hourly temperature, 
two bins of growing degree days (GDDlow, thermal time between Tbase 
(base temperature) and Topt (optimum temperature); GDDhigh, thermal 
time between Topt and Tmax (maximum temperature)), cold degree 
days (thermal time below Tbase) and heat degree days (thermal time  
above Tmax) were calculated and then accumulated throughout the 
growing season for wheat and maize, respectively. Tbase, Topt and Tmax are 
0, 26 and 34 °C for wheat and 8, 30 and 42 °C for maize, respectively.

Eighty per cent of the 6,000 grid-scenario simulation outputs were 
randomly selected for training the six MLs and the remaining 20% for 

validation. The root mean squared error and determination coefficient 
(R2) were used to evaluate model performance. XGBoost was consist-
ently the best ML emulating APSIM-projected ΔSOC, average yield and 
N2O emission and explained more than 95% of their variances (Supple-
mentary Fig. 5 and Supplementary Table 5). As such, the XGBoost model 
was selected as the emulator of APSIM and used to optimize yield, SOC 
dynamics and soil N2O emission under various management practices 
in each 0.0083° grid cell across the region.

Estimation of GHG emissions
Coupling with ΔSOC and N2O emissions projected by the APSIM model, 
a life cycle assessment-based evaluation method48 was used to estimate 
net GHG emissions in CO2 equivalent (CO2-eq ha–1 per year) of three 
components (Eqs. (1)–(4)): (1) GHG emissions of resource input caused 
by input supply chain (Inputemission, for example, fertilizer production, 
transport and combustion of fossil fuels), (2) direct and indirect N2O 
emissions caused by the application of N fertilizer (N2Oemission) and (3) 
SOC changes (ΔSOC):

GHGemission = Inputemission + N2Oemission, (1)

where

Inputemission = Ninput × EFNinput + Irr × 9.2 × EFirr
+SR × (EFchopping + EFincorporation)

(2)

N2Oemission = N2Odirectemission + N2Oindirectemission (3)

N2Odirectemission = N2OAPSIM × 44
28 × GWP (4)

N2Oindirectemission = ( Ninput × 0.1 × EFNvol_N2O

+Ninput × 0.3 × EFNleach_N2O ) × 44
28
× GWP

(5)

Cemission = −ΔSOC × 44
12 (6)

NetGHGemission = TotalGHGemission + Cemission, (7)

where GHGemission are the total GHG emissions and Inputemission is the GHG 
emissions from agricultural inputs, including N fertilizer production 
(cradle to gate), electricity for irrigation, straw chopping and incorpo-
ration. GWP is the 100-year global warming potential of N2O, which is 
265 in the Intergovernmental Panel on Climate Change (IPCC)49.  
Ninput (kg N ha−1), Irr (mm) and SR (%) are the N inputs from N fertilizers, 
irrigation amount and the fraction of crop residues retained, respec-
tively. EFNinput is the GHG emission factor of N fertilizer production 
(Supplementary Table 6); 9.2 (kWh–1 mm–1) is the electricity consump-
tion per unit irrigation water application (mm); EFirr is the GHG emission 
factor of electricity by irrigation; EFchopping and EFincorporation are GHG 
emissions for crop residue chopping and incorporation for maize. 
N2OAPSIM is the annual cumulative amount of APSIM-projected N2O 
emission (kg CO2-eq ha–1) resulting from nitrification and denitrifica-
tion; EFNvol_N2O and EFNleach_N2O are N2O emission factors induced by N 
volatilization and leaching, respectively; 0.1 and 0.3 are the fractions 
of volatilized and leached N, respectively, derived from IPCC 200650. 
Emission factors used in these equations are derived from previous 
studies or values suggested by the IPCC (Supplementary Table 6).

Co-optimization of multiple management practices
Using the XGBoost model, we first projected the maximum yield poten-
tial for each grid cell under each climate scenario using a differential 
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evolution algorithm51. Then, management practices (that is, mini-
mum N input, irrigation amount and residue retention) under each 
climate scenario were optimized to achieve at least 90% of the maxi-
mum yield potential plus minimum net GHG emissions and maximum  
SOC sequestration.

We performed a multi-objective optimization algorithm (Non-
dominated Sorting Genetic Algorithm II, NSGA-II) to search the global 
optimal management practices for the target. NSGA-II is a fast sort-
ing and elite multi-objective genetic algorithm for searching the 
Pareto-optimal front (a set of solutions that define the best trade-offs 
between competing objectives)52. To build the objective function, the 
best machine learning emulators (that is, XGBoost) were wrapped to 
predict the variable of ΔSOC, wheat and maize yield and N2O emission. 
Management practices were treated as parameters of objective func-
tions to be optimized. The parameters were firstly set a boundary with 
lower and upper values (that is, 0 kg ha–1 per year ≤ N input ≤ 400 kg ha–1 
per year, 0 mm ≤ irrigation water use ≤ 600 mm, 0 ≤ residue retention 
fraction ≤ 100%) for both wheat and maize seasons. Pareto solution set 
was obtained through multiple iteration runs by comparing objective 
function values in NSGA-II (Supplementary Fig. 14). This Pareto solu-
tion set includes several preferable management practices (Supple-
mentary Fig. 14); the management combination with maximum yield 
was selected as the final best one. By conducting the optimization for 
each grid, we obtained digital maps of management at the resolution 
of 0.0083° as well as the corresponding yield, GHG emissions and SOC 
sequestration values.

Environmental controls on optimal management
We randomly sampled 50,000 points of optimized management 
combinations from their mapping products in the NCP at a resolu-
tion of ∼1 km and explored the influence of a set of environmental 
covariates including climate variables (MAT, MAP, MAR, potential 
evapotranspiration (ETp) and so on) and soil properties (that is,  
pH, SOC, bulk density, SAT and so on) on the optimized management 
practices. Correlation analysis was conducted to assess the pair- 
wise associations among individual management practices. In addi-
tion, linear mixed-effects regression (using the ‘lmer’ function of 
the ‘lmerTest’ package in R) was performed to identify the effects of 
environmental covariates on optimal management by climate mod-
els as the random effect factor. At last, a VPA based on redundancy 
analysis (RDA)53 was conducted to assess the controlling factors of 
the best management combination using R package UPSetVP. RDA 
models the effect of an explanatory matrix on a response matrix 
(that is, the optimized management practices in this study). Com-
bining RDA with VPA, the approach allows the partitioning of the 
variance of a response matrix to explanatory matrices. We divided 
explanatory datasets into four groups: temperature-related includ-
ing MAT and MAR, water-related including MAP and ETp, simulation  
periods (history, 2030s and 2060s) and climate projection models 
(GCMs × SSP). The result of VPA represents the percentage of explained 
variance by explanatory matrices and their intersections.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Daily historical climate data are available at https://data.cma.cn/. The 
soil database is freely available at http://poles.tpdc.ac.cn/zh-hans/
data/8ba0a731-5b0b-4e2f-8b95-8b29cc3c0f3a/?tdsourcetag=s_
pctim_aiomsg. The raw datasets from CMIP6 simulations are available 
at https://esgf-node.llnl.gov/projects/cmip6/. The bias correction 
method is available at https://www.isimip.org/gettingstarted/isi-
mip3b-bias-adjustment/. The APSIM Classic is freely available at https://
www.apsim.info/download-apsim/. The data needed to regenerate 

the results in this study are publicly available at https://figshare.com/
articles/figure/_b_Data_for_Spatiotemporal_co-optimization_of_agri-
cultural_management_practices_b_/24471919.

Code availability
The code used to generate the results can be accessed at https://
figshare.com/articles/figure/_b_Data_for_Spatiotemporal_
co-optimization_of_agricultural_management_practices_b_/24471919.
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Study description We develop a hybrid approach combining agricultural system modelling, machine learning, and life cycle assessment to enable 
spatiotemporally co-optimization of fertilizer application, irrigation and residue management, and apply the approach to predict 
optimal management to achieve yield potential and minimizing greenhouse gas emissions in the North China Plain - a key region of 
global wheat and maize production.  

Research sample In this study, we used historical meteorological data and soil data to run APSIM model. Nine long-term agricultural trials conducted in 
the North China Plain (NCP) were used to verify APSIM parameters. The farmers’ actual practice and field experiment-based 
recommendation of management practices collected in published data were used to compare with our optimized management.

Sampling strategy For the observational experiment-based data, we conducted a literature search to collect data about yield and relevant application of 
N fertilizers, irrigation amount and residue retention. A total of 307 observations including 108 values of N fertilizer use from 33 
studies, 182 values of irrigation water use from 38 studies, and 17 values of residue retention fraction from seven studies were 
obtained. The observational practices can be divided into two general types: farmers’ actual practice and field experiment-based 
recommendation of management practices. We calculated the N productivity and irrigation productivity (Fig. S11) as the ratio of yield 
to corresponding N input and irrigation amount. All data have been grouped into two types (i.e., farmers’ practice and trial-based 
recommendation), and compared to model predictions in the similar period at the regional level. In addition, we extracted data from 
12 long-term agricultural trials from 11 studies on long-term SOC changes, and 17 from 6 studies on N2O and GHG emission) with 
current farmer's conventional and recommended management practices for winter wheat-summer maize system during 1980-2017 
in the region studied. For model simulation, 6000 grid-scenario simulation outputs from the APSIM model were selected to train 
machine learning models.

Data collection Daily historical meteorological data at ~2400 climate stations across China (including 318 stations in NCP), including maximum 
temperature, minimum temperature, precipitation, sunshine hours, relative humidity and wind speed, were obtained for the period 
1981-2014 from the Chinese Meteorological Administration (http://data.cma.cn). We collected climate during the period from 2015 
to 2070 for six general circulation models (GCMs, including BCC_CSM2_MR, HadGEM3_GC31_LL, FGOALS-g3, IPSL_CM6A_LR, 
GFDL_ESM4, MIROC6, Table S1) participating the Coupled Model Inter-comparison Project phase 6 (CMIP6), under two shared socio-
economic pathways (i.e., SSP2-4.5 and SSP5-8.5). Soil data were obtained from the China Soil Scientific Database, which was 
generated based on more than 7000 soil profile measurements in the late 1970s/early 1980s across China and is the most 
comprehensive soil data available. We conducted a literature search to collect data about yield and relevant application of N 
fertilizers, irrigation amount and residue retention from published data. We collected data from nine long-term agricultural trials 
conducted in the North China Plain (NCP) as a part of the National Long-term Fertilization Experimental Network in China.

Timing and spatial scale The spatial scale is ~1 km (1/120 degree) spatial resolution across the North China Plain (NCP) croplands. The model simulation data 
were simulated from 1981 to 2070. Three periods, 1995–2014 (as the historical reference period), 2030s: 2021–2040 (represents 
near future), and 2060s: 2051–2070 (represents distant future) were selected to optimized cropland management practices.

Data exclusions None.

Reproducibility Our study is an integrated study mainly based on model simulation ,statistical data and reference data. Our results can be  
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Randomization To solve this computational challenge, 6000 grid-scenarios were randomly drawn to run the APSIM model. 

Blinding No blinding was required.
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