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Soil organic carbon (SOC) mineralization is a key component of the global carbon 
cycle. Its temperature sensitivity Q10 (which is defined as the factor of change in 
mineralization with a 10 °C temperature increase) is crucial for understanding the 
carbon cycle-climate change feedback but remains uncertain. Here, we demonstrate 
the universal control of carbon quality-availability tradeoffs on Q10. When carbon 
availability is not limited, Q10 is controlled by carbon quality; otherwise, substrate 
availability controls Q10. A model driven by such quality-availability tradeoffs explains 
97% of the spatiotemporal variability of Q10 in incubations of soils across the globe 
and predicts a global Q10 of 2.1 ± 0.4 (mean ± one SD) with higher Q10 in northern 
high-latitude regions. We further reveal that global Q10 is predominantly governed 
by the mineralization of high-quality carbon. The work provides a foundation for 
predicting SOC dynamics under climate and land use changes which may alter soil 
carbon quality and availability.

soil organic carbon | carbon pools | temperature sensitivity | mineralization | incubation

The mineralization of global soil organic carbon (SOC) results in the release of approxi-
mately 57 to 80 Pg C to the atmosphere as carbon dioxide (CO2) each year (1, 2), equal 
to almost 9% of the atmospheric carbon pool. Climate warming may accelerate SOC 
mineralization (3), leading to positive soil carbon cycle-climate change feedbacks. However, 
the rate of this acceleration remains uncertain, particularly across large spatial extents  
(4, 5), and the underlying controls and mechanisms are also controversial (6, 7). According 
to the “carbon-quality temperature” hypothesis, recalcitrant SOC is more sensitive to 
temperature than labile SOC as it requires higher activation energy (8, 9), as depicted by 
the Arrhenius equation (10, 11). Nevertheless, comparable or even lower sensitivity of 
recalcitrant SOC has also been widely observed (12–14). This inconsistency could be 
explained by the low availability of SOC substrates to decomposers, mainly microbes. 
Indeed, the Michaelis–Menten theory predicts that if microbes cannot access substrates 
or are limited by metabolically preferred substrates (e.g., labile carbon with high energy 
density in order to utilize substrates with low energy density), SOC mineralization will 
be insensitive to temperature (15, 16). Physiochemical isolation of SOC from decompo-
sition and other environmental constraints or unbalanced composition in terms of energy 
density and activation energy demand for overall SOC mineralization may result in general 
substrate limitation (17). Due to the high spatial heterogeneity of edaphic properties and 
high diversity of SOC composition, it is not surprising to observe highly variable apparent 
temperature sensitivity under different environmental conditions. Simultaneous consid-
eration of carbon quality and availability is vital for reliable prediction of SOC mineral-
ization in response to temperature changes (18).

We propose that combining the effects of carbon quality and availability can provide 
a universal explanation for the variability in the temperature sensitivity of SOC mineral-
ization in global soils. Both factors affect the temperature sensitivity of SOC mineraliza-
tion, but their relative importance depends on whether microbial mineralization is more 
limited by SOC quality or availability. This can be mathematically represented as (18): 
Q10 = Q10_max•f  (A)•f  (Q), where Q10 is the observed temperature sensitivity, defined as the 
change in SOC mineralization with a 10 °C temperature rise. Q10_max represents the 
maximum potential Q10, while f  (A) and f  (Q) (both range from 0 to 1) are the availability- 
and quality-limitation-induced reduction of Q10_max, respectively (Materials and Methods). 
Specifically, if SOC availability is not or less limited [i.e., f  (A) is close to 1], Q10 is primarily 
limited by carbon quality [i.e., f  (Q) < f  (A)] with higher values under lower carbon quality, 
as predicted by the Arrhenius equation (Fig. 1). Conversely, if SOC availability is limited 
[i.e., f  (Q) is close to 1], carbon availability takes precedence [i.e., f  (Q) > f  (A)], resulting 
in lower Q10 under conditions of lower carbon availability, as predicted by the Michaelis–
Menten equation (Fig. 1).

Significance

Understanding how soil carbon 
mineralization responds to 
warming is pivotal for accurate 
predictions of carbon cycle-
climate change feedbacks and 
effective climate mitigation.  
By analyzing a comprehensive  
global dataset encompassing 
incubations of soils across the 
globe, we demonstrate that the 
temperature sensitivity of soil 
carbon hinges on the interplay 
between carbon quality and 
availability. In the absence of 
carbon limitations, carbon quality 
dictates sensitivity, with more 
recalcitrant carbon exhibiting 
higher temperature sensitivity. 
In situations of limited carbon 
availability, substrate availability 
becomes the decisive factor. 
Furthermore, we ascertain that 
temperature sensitivity of global 
soil carbon is primarily governed 
by the mineralization of labile 
carbon. Consequently, potential 
decline of labile carbon due to 
global warming may amplify 
positive carbon cycle-climate 
change feedbacks.
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To test our proposition, we conducted a comprehensive litera-
ture review and obtained a global dataset of SOC mineralization 
from 721 soils collected worldwide (SI Appendix, Fig. S1) under 
laboratory incubation conditions. We used a continuous interval 
of 0.2% to calculate the mineralized fraction, which indicates a 
decreasing gradient of SOC quality and availability over the course 
of incubation. Then, we estimated changes in the Q10 of SOC 
mineralization over time by calculating the “equal-carbon” Q10 
(19, 20) based on the time required to respire a defined fraction 
of SOC (0 to 0.2%, 0.2 to 0.4%, 0.4 to 0.6%, etc.). As incubation 
experiments typically do not involve continuous carbon inputs, 
the respired fraction provided an opportunity to distinguish 
between quality- and availability-limited Q10 by evaluating the 
temporal dynamics of Q10 with the progression of incubation (e.g., 
depletion of labile SOC and decrease of SOC availability). Using 
the calculated temporal Q10 values and their corresponding 
respired fractions, we fitted a model based on the proposed inter-
actions between carbon quality and availability to assess whether 
the model can accurately capture the temporal dynamics of 
observed Q10, and the model was applied to infer Q10 at the start 
of incubation (Q10_initial) and the relative importance of carbon 
quality and quantity.

Results and Discussion

Two Theoretical Types of Temporal Q10 Dynamics. If our 
proposition regarding the interactions between carbon quality and 
availability is correct, and the incubation period is long enough, 
we would only observe two types of temporal Q10 dynamics 
characterized by decreased carbon quality and availability as 
incubation progresses. Type I involves an initial increase in Q10 
to a maximum, followed by a decrease (i.e., an increase phase 
followed by a decrease phase). For this type, the initial substrate 
is sufficient, and mineralization is not limited. The initial Q10 and 
the rate of change toward the turning point would vary depending 
on the initial substrate quality. However, depending on the initial 

substrate availability and the length of the incubation, we may 
only observe the first increase phase (SI Appendix, Fig. S2A). Type 
II involves a persistent decrease in Q10, regardless of incubation 
duration, due to persistent availability limitations (SI Appendix, 
Fig. S2B). The initial Q10 and the rate of decrease depend on the 
initial intensity of the limitation. These expectations have been 
confirmed. Specifically, 77% of the trials can be clearly classified 
into these two types (SI Appendix, Supplementary Data). Among 
them, 65% are type I, which on average have a higher initial 
SOC content (i.e., lower probability of substrate limitation) 
than type II trails (6.5 % vs. 3.3 %, SI Appendix, Fig. S3) which 
accounts for 12% of the trials (SI Appendix, Supplementary Data). 
We compared the maximum Q10 values among the two types 
(SI Appendix, Fig. S4). The maximum Q10 values were expected 
to be in an order of type I > type II, which was confirmed in our 
analysis. On average, the maximum Q10 value in Type I trials was 
3.9, which was almost as twice as the maximum Q10 value in Type 
II trials (SI Appendix, Fig. S4).

There are 23% of the trials that do not fall into either type I or 
type II categories and are referred to as type III dynamics. In these 
trials, Q10 either remains stable or fluctuates greatly over time 
(SI Appendix, Fig. S2C). The reason for such dynamics may be 
due to several factors such as the presence of abundant substrates 
with similar quality and/or activation energy, very low carbon 
availability, and unstable incubation environment, among others. 
Upon examining these trials, we found that they tended to have 
short pre-incubation periods (which may not allow for microbial 
stabilization), or larger temperature differences for estimating Q10 
(which may result in complex consequences on microbial metab-
olisms and carbon use strategies).

Spatiotemporal Variability of Q10 and Its Drivers. Individual 
Q10 values estimated from the global dataset vary substantially 
among soils and over time, ranging from 0.1 to 15 with a median 
of 1.8 (Q10 values exceeding 15, which accounts for 1% of the 
total data and may be caused by confounding factors such as 
microbial community shifts, enzyme responses, and desorption 
of carbon substrates from mineral surfaces (21, 22), have been 
excluded in this study, Fig. 2A). This spatiotemporal variability 
of Q10 is well explained (R2 = 0.94) by a machine learning–based 
model—random forest—driven by climatic, vegetation and 
edaphic properties at the soil location, incubation manipulation, 
and respired fraction of SOC (Fig. 2A). Respired fraction alone 
explains 33% of the variance of Q10 (Fig. 2B). As the calculated 
time-course values of respired fraction are proxies of carbon 
quality and availability, this result demonstrates the critical role 
of carbon quality and availability in controlling Q10. Mean annual 
temperature at soil location and two incubation manipulation-
related variables including incubation temperature range and the 
lower temperature to estimate Q10 are the following three most 
important variables, explaining 5%, 6%, and 5% of the Q10 
variance, respectively. All other variables assessed have less than 
5% interpretability (SI Appendix, Fig. S5). Together, incubation 
manipulation explains 24% of the variance of Q10, while climatic 
and edaphic properties explain 15% and 22% of the variance 
of Q10, respectively. Vegetation variables together only explain 
6% (SI  Appendix, Fig.  S5). These findings demonstrate the 
integrated effects of environmental conditions and experimental 
manipulation on Q10 estimation and explain why Q10 varies 
greatly in the literature.

Averaging across the globe dataset, Q10 initially increases and 
then decreases as incubation progresses, in conjunction with the 
increase of the respired fraction of SOC (SI Appendix, Fig. S6). 
The average Q10 at the turning point, where it transitions from 

Fig.  1. Conceptual diagram of temperature sensitivity of soil carbon 
mineralization (Q10) as impacted by substrate quality and availability. The 
effects of substrate availability [f(A)] and quality [f(Q)] are depicted by the 
Michaelis–Menten and Arrhenius equations, respectively. Parameters in the 
equations are elucidated in SI Appendix, Table S2.
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increase to decrease, is 3.1 (which represents an average maximum 
Q10). At this point, the corresponding respired fraction of SOC 
ranges between 4.2 and 4.4%. When we divide the data into two 
groups with and without carbon inputs, the group with carbon 
inputs shows a smaller Q10 of 2.6 at the turning point, with the 
corresponding respired fraction of SOC increasing to 4.8 to 5.0% 
(SI Appendix, Fig. S6), suggesting that the addition of new carbon 
delays Q10 from reaching its maximum. The global average tem-
poral pattern of Q10 suggests interactive effects of carbon quality 
and availability on the temperature sensitivity of SOC. In the first 
phase, Q10 increases with incubation due to the depletion of labile 
SOC until reaching the turning point, while in the second phase, 
Q10 shows a decreasing trend (SI Appendix, Fig. S6). Notably, 

many laboratory incubation experiments observed only the 
increase phase of Q10 (19, 23, 24), likely due to abundant sub-
strates or the relatively short duration of the incubation as dis-
cussed above.

Interactions between Carbon Quality and Availability. The 
global average temporal dynamics of Q10 can be well captured 
(R2 = 0.89) by modeling the interactions between carbon quality 
and availability (Fig. 3A). Examining the two reduction factors, 
f  (Q) and f  (A), which represent the effects of carbon quality and 
availability, respectively, it is evident that the initial increase phase 
is primarily controlled by f  (Q) while f  (A) is larger and closer to 1 
than f  (Q), and the subsequent decrease phase is primarily controlled 
by f  (A) while f  (Q) remains relatively stable and close to 1 (Fig. 3B). 
The model explains 97% of the spatiotemporal variance of Q10 
across the trials (Fig. 3C). For individual trials, the model explains 
>50% of the Q10 variance in 88% trials (SI Appendix, Fig. S7). 
Trials with relatively poor model performance mainly belong to 
type III trials with large fluctuations in Q10 over time (SI Appendix, 
Figs. S7 and S8). For type III trials, the model explains 94% of 
the Q10 variance, but the RMSE (root mean squared error) is 
larger than that of type I and type II trials (Fig. 3C). However, 
it is interesting to note that the average Q10 of type III trials also 
presents clear type I dynamics (Fig. 3A), supporting the general 
global pattern of the two phases albeit potential confounding 
factors in individual trials.

The modeling results provide critical insights into the interac-
tions between substrate availability (S) and quality indicated by 
activation energy (Ea) in regulating Q10 (Materials and Methods). 
Theoretically, if microbial mineralization is not limited by S, Q10 
should be equal to the maximum potential Q10 (i.e., Q10_max in 
the model) which is inherently determined by substrate chemistry 
(22). In this case, the Michaelis–Menten equation models a con-
stant Q10 and is incapable of simulating the determinant process 
underpinning Q10_max and therefore Q10. Simulation of carbon 
quality represented by the Arrhenius equation compensates such 
incapability and simulates Q10 as a function of Ea of substrates 
under sufficient S. At the beginning of the trials, specifically, Ea 
(i.e., E0 in the model) was estimated to have a mean value of 
51.1

209.8

2.4
   kJ mol−1 (mean with 5% and 95% quantiles) (SI Appendix, 

Fig. S9). This range of values encompasses a number of empirical 
observations and theoretical estimates of Ea obtained under various 
soil environmental conditions (9, 25, 26). When mineralization 
is limited by S, Q10 is jointly regulated by S and Ea. Although 
low-quality substrates have a higher Ea and thus a higher Q10, 
decomposers will be eventually limited by energy availability for 
activating the mineralization of recalcitrant SOC (27). These eval-
uations have been verified by comparing the distributions of opti-
mized model parameters among the three types of trials 
(SI Appendix, Fig. S9). First, Q10_max is on average comparable 
among the three types (SI Appendix, Fig. S9A). Second, except E0, 
all parameters are significantly different between type I and type 
II trials, while these parameters for type II trials either significantly 
differ from type I trials or from type II trials (SI Appendix, Fig. S9 
B and C). For example, it is expected that the magnitude of initial 
substrate availability (S0) at the beginning of Type I trials is greater 
than that of type II trials. These results align with our proposition 
that the three types of trails may present distinct status in terms 
of carbon quality or carbon availability.

Initial Q10 and Its Global Pattern. In the Q10 model, the effects 
of both carbon quality f  (Q) and availability f  (A) are modeled as 
functions of respired fraction (Materials and Methods), allowing us 

Fig. 2. Spatiotemporal changes in the temperature sensitivity of soil carbon 
mineralization (Q10) and their main drivers. Q10 values were calculated for 
cumulative respired fractions at an interval of 0.2% (0 to 0.2%, 0.2 to 0.4%, 
0.4 to 0.6%, etc.). (A) Variation of Q10 values with respired fraction. Inset shows 
the performance of a random forest model to explain the variance of Q10 
values, gray dashed line shows the 1:1 line, and red line shows the regression 
line. RMSE, root mean squared error; R2, determination coefficient. (B) Partial 
dependence of Q10 values on the four most important controlling factors 
which explain 5% variance of Q10 at least. Shading area shows the 95% CI. 
Temperature range is the difference of two temperatures used to calculate 
Q10, and lower temperature is the low temperature of the range.
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to estimate initial f(Q), f(A), and thus Q10 at the start of incubation 
by setting the respired fraction to zero which are, respectively, 
referred as f(Q)initial, f(A)initial, and Q10_initial hereafter. These initial 
values can help diagnose f(Q), f(A), and Q10 under field conditions, 
assuming that soil carbon quality and availability at the start of 
incubation can approximate that in the field.

The optimized Q10 model estimates a Q10_initial of 1.9 ± 1.1 
(mean ± one SD), with the highest Q10_initial in tundra (3.3 ± 
1.8), followed by cropland (2.2 ± 1.3), forest (1.9 ± 1.1), and 
wetland (1.8 ± 0.5). Grassland exhibits the lowest Q10_initial of 
1.5 ± 0.5 (Fig. 4A). We compare our estimates of Q10_initial for 
soil incubation with that based on field observations of total soil 
(Q10_Rs) and heterotrophic respiration (Q10_Rh) (28). The results 
show that the average Q10_initial for soil incubation across the 
globe is generally smaller than Q10_Rh (2.2 ± 0.6) which is sig-
nificantly smaller than Q10_Rs (2.5 ± 0.8, Fig. 4A). While Q10_initial 
and Q10_Rh are comparable in grasslands, Q10_initial is consistently 
smaller than Q10_Rs irrespective of ecosystems. These discrepan-
cies would be attributed to factors such as 1) different approaches 
used to estimate Q10 (i.e., no model can 100% explain the data), 
2) model-fitting uncertainties due to data quantity and quality 
limitations, and 3) inconsistent representativeness of the datasets 

for estimating the three Q10 metrics. Despite the discrepancies, 
it is important to note that all three Q10 metrics (especially 
Q10_initial) show large variability (Fig. 4A), and Q10_initial values 
less than 1 are not rare. These results highlight the importance 
of assessing context-dependent Q10 and suggest that warming 
does not necessarily accelerate SOC mineralization (29). The 
consistently higher Q10_Rs compared to Q10_Rh and Q10_initial may 
be due to temperature-dependent root growth and biomass 
which directly influence the total amount of root respiration and 
thus the estimation of Q10_Rs (30).

The variability of Q10_initial can be reasonably predicted 
(cross-validation R2 = 0.76) by a random forest model driven by 
climatic, edaphic, and vegetation properties (SI Appendix, 
Fig. S10). We apply the random forest model to predict Q10_initial 
for each 1-km grid across the globe (Fig. 5). The global average 
Q10_initial is 2.1 (Fig. 5 A and B), which is consistent with another 
study (28). Digital global mapping shows higher temperature 
sensitivity of SOC mineralization in northern high-latitude 
regions (Fig. 5B). The most sensitive areas are located in northern 
Alaska, northern Canada, and central and eastern Siberia which 
also have high soil carbon content. Some arid/semi-arid tropical 
regions, such as northern sub-Saharan Africa and northern regions 

A B

C D

Fig. 3. Observed and modeled temperature sensitivity of soil carbon mineralization (Q10). (A) Model performance for predicting the temporal variability of global 
mean Q10. Shading area represents the 95% CI of the simulation, solid line shows the median of the 200 simulations. Bars represent one SE of observations. 
Type I shows that Q10 first increases and then decreases with time. Type II represents a persistent decrease in Q10. Type III shows that the temporal dynamic 
of Q10 do not fall into either type I or type II categories. (B) The temporal dynamics of fitted f(A) and f(Q) values corresponding to the Q10 in (A). Thin lines show 
200 estimates considering uncertainties in the data, and bold lines show the median of the 200 estimates. (C) Model performance by pooling individual results 
together. Vertical and horizontal bars represent one SDs of observed and modeled values, respectively. Gray dashed line shows the 1:1 line, and solid line shows 
the regression line. (D) the temporal dynamics of f(A) and f(Q) values for the three types. RMSE, root mean squared error; R2, determination coefficient. Thin lines 
show the median of 200 estimates for each individual trial, and bold lines show the mean value of the medians for each type of trials.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 Z
H

E
JI

A
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
A

pr
il 

7,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

18
3.

15
7.

16
3.

14
2.

http://www.pnas.org/lookup/doi/10.1073/pnas.2313842121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2313842121#supplementary-materials


PNAS  2024  Vol. 121  No. 11  e2313842121� https://doi.org/10.1073/pnas.2313842121   5 of 8

of the Namib Desert, also have high Q10_initial. However, the data 
in these regions are very limited (SI Appendix, Fig. S1), which 
would be also the reason of larger uncertainty compared to other 
regions (Fig. 5 C and D).

The Relative Importance of Carbon Quality and Availability. 
The estimated f(Q)initial and f(A)initial values provide crucial insights 
into the relative significance of carbon quality and availability in 
governing Q10_initial. Across the incubated soils, on average f(Q)initial 
is smaller than f(A)initial, with an average log ratio of f(Q)initial to 
f(A)initial of –1.3 (Fig.  4B). This suggests that substrate quality 
exerts a stronger influence than availability in limiting Q10_initial. 
That is, SOC mineralization is dominant by relatively labile SOC 
components with lower activation energy, and quality limitation 
of Q10 would be more common than availability limitation in 
global soils.

However, tundra soils are different from soils in other ecosys-
tems, as they are much less limited by quality, and the importance 
of quality and availability is comparable with an average log ratio 
of f(Q)initial to f(A)initial of –0.1 (Fig. 4B). Although Arrhenius kinet-
ics predict higher f(Q) for a given carbon quality at lower temper-
atures, this can be explained by two other factors. On the one 
hand, carbon availability in tundra for microbial decomposition 

is often limited by low temperature as most SOC is frozen in peat 
for most of the year (e.g., permafrost). On the other hand, 
high-quality carbon substrates with high nutrient content (e.g., 
nitrogen) are usually scarce in tundra soils (31–33). It has been 
suggested that tundra soils are often dominated by complex carbon 
compounds, such as lignin, cellulose, and hemicellulose, which 
are difficult for microbes to decompose due to nutrient limitation 
(33). As a result, the Q10 of SOC mineralization in tundra may 
be vulnerable to shifts in both quality and availability, while Q10 
of other ecosystems would be more sensitive to quality changes. 
Wetland soils show the smallest log ratios of f(Q)initial to f(A)initial 
(Fig. 4B). For wetland soils, they are usually carbon-rich due to 
inhibited SOC decomposition under anaerobic conditions and 
therefore have a low probability of availability limitation. 
Additionally, waterlogging promotes the formation of dissolved 
SOC, which can be more bioavailable to decomposers and typi-
cally has a high quality (34).

It is worth noting that most soil incubations are conducted 
under optimal soil moisture conditions. Since soil moisture is a 
critical factor influencing the accessibility of carbon to microbes, 
incubation data may underestimate the impact of carbon availa-
bility on Q10 if optimal soil moisture conditions alleviate the con-
straints on carbon availability (35). In real field conditions, both 
drought and waterlogging (as observed in wetland soils) can limit 
microbial access to or utilization of carbon substrates, subse-
quently affecting the apparent Q10. Additionally, other aspects of 
incubation procedures, such as the duration of pre-incubation and 
soil sieving, can influence the stabilization and destabilization 
processes of soil carbon, as well as microbial activities. These fac-
tors may impact the temporal dynamics of Q10.

Conclusions and Implications

Our results demonstrate that carbon quality–availability interac-
tions universally control the temperature sensitivity of SOC min-
eralization across the globe and over time. This interaction can be 
effectively modeled by integrating Arrhenius and Michaelis–
Menten kinetics. When mineralization is not limited by substrates, 
carbon quality explains the increasing Q10 values as SOC quality 
declines. Conversely, when substrates are limited, Q10 decreases 
with decreasing availability. The estimated Q10 across the globe is 
2.1 with much higher values in colder regions. Furthermore, we 
found that carbon quality plays a predominant role in controlling 
Q10 globally. High-quality SOC may contribute to the majority 
of global SOC mineralization (36), and the sensitivity of SOC to 
warming may significantly rise if warming results in depletion of 
high-quality SOC, i.e., positive soil carbon cycle-climate change 
feedbacks. However, on a global scale, 4% SOC loss would result 
in availability limitation-induced decrease of Q10.

The carbon quality–availability interactions can serve as a foun-
dation for explaining or inferring whole-profile SOC dynamics 
in response to changes in carbon quality and availability. Climate 
and land management changes may alter carbon inputs to soils in 
terms of both quality and quantity (37), thereby changing SOC 
quality and availability. The consequences of such changes will 
depend on the temporal dynamics of carbon quality and availa-
bility and their interactions. A long-term field warming experi-
ment has observed multi-phase decay of SOC (13), which can be 
explained by the shifts in carbon substrate quality and availability 
during the experiment. Based on the general vertical distribution 
of carbon quality and availability (38), it is reasonable to infer that 
topsoil SOC dynamics would be more sensitive to quality changes 
as topsoil is generally substrate-abundant and has high-quality 
substrates, while subsoil SOC is more sensitive to availability 

Fig. 4. Inferred temperature sensitivity of soil carbon mineralization at the 
start of incubation (Q10_initial) and the impacts of carbon availability [f(A)initial] 
and quality [f(Q)initial]. Q10_Rh Q10_Rs are the Q10 of soil heterotrophic and total 
respiration (heterotrophic plus autotrophic respiration), respectively, and are 
derived from ref. 28. Values of <1 and >4.5 are excluded in ref. 28. Red dots 
show the mean value. Different letters in (A) represent a significant difference 
among the estimates at the level of P < 0.05. Different letters in (B) represent a 
significant difference among ecosystems at the level of P < 0.05. The left y-axis 
in (B) represents the value of reduction factor [i.e., f(A)initial and f(Q)initial] and 
the right y-axis represents the value of loge [f(Q)initial:f(A)initial].
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changes as it is substrate-limited and has low-quality substrates. 
If high-quality SOC declines due to global change such as warm-
ing (39), topsoil SOC may show higher sensitivity to warming 
than subsoil SOC, which has been confirmed by estimates based 
on synthesizing SOC measurements in global soil profiles (4) as 
well as by incubation experiments (24). However, if substrate 
availability limitation is relieved in subsoil, subsoil SOC would 
show higher temperature sensitivity than topsoil SOC. Increasing 
carbon inputs to deep soil layers (e.g., by growing deep-rooting 
plants), for example, has been suggested as an effective way to 
promote carbon sequestration (40). Under climate warming, how-
ever, increased carbon input would also relax availability limita-
tions, particularly in subsoil layers, thereby enhancing 
decomposition and offsetting the benefit for carbon sequestration. 
The global mapping of Q10 can help diagnose hotspots of sensitive 
areas of SOC mineralization under global warming, promoting 
soil carbon sequestration and climate change mitigation by man-
aging carbon quality and availability.

Materials and Methods

Data Sources. A global dataset of SOC mineralization (g CO2-C kg−1 SOC d−1) 
measured under laboratory incubation conditions was compiled by searching 
the Web of Science and the Chinese National Knowledge Infrastructure (CNKI). 
Topic keywords “soil AND (respir* OR ((carbon OR C OR CO2 OR carbon dioxide 
OR organic matter OR OM) AND (flux OR efflux OR emission OR release OR loss 
OR mineralize* OR decompos*))) AND (temperature OR warm* OR cool*) AND 
(incubat* OR culture)” are used for the search. As a complementary, we also 

screened five published papers synthesizing SOC mineralization data (41–45) 
to target publications which may be missed from our search. All publications 
must meet the following criteria: 1) the soil used for incubation is sampled from 
the mineral layer; 2) the same soil must be incubated under at least two temper-
atures under otherwise same incubation conditions, enabling the estimation of 
Q10; and 3) time-course SOC mineralization rates are reported or can be directly 
calculated from the reported data. All relevant numerical data were directly 
extracted from the publication, and data presented in figures were extracted 
using WebPlotDigitizer (46). Finally, we obtained 21,979 data points observed 
by incubating 721 soils across the globe (SI Appendix, Fig. S1) from 191 publi-
cations (SI Appendix, Table S3).

In the dataset, incubation temperature ranges from –10 °C to 60 °C, and incuba-
tion duration ranges from 1 to 924 d. We also extracted, if available, SOC content, 
soil pH, total nitrogen content, soil C:N ratio, soil bulk density, and texture of the 
incubated soils before incubation. If these variables are not reported (SI Appendix, 
Table  S1), we extracted them from the Harmonized World Soil Database (47). 
Ecosystem type (i.e., cropland, desert, forest, grassland, tundra, and wetland), site 
location (longitude and latitude), and variables relating to incubation manipulation 
(e.g., incubation temperature and soil moisture) were also recorded. At each soil 
location, climate attributes were extracted from WorldClim (48).

Temporal Dynamics of Q10. We calculated the “equal-carbon” Q10 proposed 
by Rey and Jarvis (20) which can reflect the changes of temperature sensitivity of 
SOC with time (43). Specifically, Q10 was calculated based on the time required to 
mineralize a defined fraction of SOC under two temperatures (19):

	 [1]Q10 =

(

tTl

tTh

)
10

T
h
−T
l

,

Fig. 5. Global spatial pattern of Q10 at the start of incubation (Q10_initial) and its uncertainty. (A) and (B) Q10_initial and its latitudinal pattern, respectively. (C) and 
(D) Uncertainty of Q10_initial and its latitudinal pattern, respectively. Gray area in (B) and (D) shows one SD of the mean. Gray dashed lines show the global mean 
Q10_initial and its uncertainty. Uncertainty is estimated as the coefficient of variance of 500 estimates in the random forest model for predicting Q10_initial.
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where tTl   and tTh   are the time required to mineralize the defined fraction of SOC 
under incubation temperature of Tl and Th, respectively. Considering SOC as a 
continuum, the fraction of mineralized (or respired) SOC was determined at 
continuous gradients with an interval of percentage respired SOC of 0.2% (i.e., 
0 to 0.2%, 0.2 to 0.4%, 0.4 to 0.6%, …, which represent a gradient of decreasing 
lability of SOC with the proceeding of incubation). Here, we note that mineralized 
fraction at the end of incubation in some experiments does not reach to 0.2% 
(due to very short incubation duration and low incubation temperature), and 
these experiments are excluded for the assessment (SI Appendix, Table S3). This 
approach assumes that a certain amount of mineralized SOC comes from a similar 
fraction of SOC when the soils are at different temperatures, and labile pools will 
decompose faster/earlier than passive pools (19).

A machine learning–based statistic model—random forest—was used to 
explore the drivers over the variability of Q10 across the trials. Partial depend-
ence analysis was used to test the relationship between the predicted Q10 and 
explanatory variables across the entire range of possible values included in 
the random forest modeling. The considered drivers are shown in SI Appendix, 
Table S1. Before fitting the model, the variance inflation factor (VIF) method was 
used to minimize the multicollinearity of explanatory variables. The explanatory 
variables with a VIF value greater than 10 were excluded. We classified the 
explanation factors into four main groups: 1) climate conditions, 2) soil prop-
erties, 3) vegetation, 4) experimental manipulation (e.g., temperature range 
used to calculate Q10: Th–Tl, ΔT—the difference between Tl and mean annual 
temperature at soil sampling location). The specific explanatory variables in 
each group after minimizing the multicollinearity are shown in SI Appendix, 
Table S1. In addition, we included the respired fraction of SOC (i.e., RF) as a 
proxy to represent the availability and quality of SOC. Nonparametric Kruskal–
Wallis test was used to determine the significant difference. The VIF analysis 
was conducted using the check_collinearity function in R package performance, 
the random forest analysis was performed using randomForest function in R 
package randomForest, the partial dependence analysis was conducted using 
partial function in R package pdp, and the Kruskal–Wallis test was conducted 
using kruskalmc function in R package pgirmess. All data analyses were per-
formed in R version 4.0.3 (https://cran.r-project.org/).

Data-Model Integration. Recalling our hypotheses (Fig. 1), we assume that 
the temporal dynamics of Q10 in each trial are controlled by carbon quality when 
the substrate availability is not limited, while Q10 is mainly controlled by carbon 
availability when the substrate availability is limited. A general model aligning 
with such assumptions can be written as (18):

	 [2]

where Q10_max is the maximum potential Q10 without limitations of carbon quality 
and availability, f(A) and f(Q) are the reduction factor due to carbon availability 
and quality limitations, respectively.

The Michaelis–Menten and Arrhenius kinetics represent mainstream modeling 
of SOC mineralization as impacted by carbon availability and quality, respectively. 
Under a typical temperature, the Michaelis–Menten and Arrhenius kinetics can 
be respectively written as:

	 [3]

	 [4]

where Vmax is the maximum rate of enzymatic reaction at a given temperature, 
Km is the Michaelis–Menten (half-saturation) constant, S is the substrate content, 
A is the pre-exponential factor, Ea is the activation energy, R is the gas constant 
(8.314 J K−1 mol−1), and T is the temperature in Kelvin. As Q10 can be generally 
estimated as the ratio of mineralization rate under a higher temperature (Th) to 
that under a lower temperature (Tl), the temperature sensitivity of kMM ( QkMM

 ) and 
kArr ( QkArr

 ) can be, respectively, calculated as:

	 [5]

	 [6]

where Vmax_Th   and Vmax_Tl   are the Vmax under temperature Th and Tl, respectively, 
Km_Th

   and Km_Tl   are the Km under Th and Tl, respectively. Both S and Ea keep constant 
under different temperatures (10, 16). QkMM

 and QkArr
 can be normalized to their 

potential maximum value to represent f(A) and f(Q), respectively:

	 [7]

	 [8]

where Ecri is the critical activation energy (kJ mol-1) under which kArr reaches the 
maximum. With the proceeding of incubation, S is expressed as an exponential 
function of the respired fraction of SOC (RF) (SI Appendix, Fig. S11):

	 [9]

where S0 is the initial substrate availability (mg C kg–1 soil) at the start of the 
incubation, α is the decreasing rate of substrate availability with RF. This function 
models that substrate availability decreases with the proceeding of incubation. Ea 
is expressed as a logistic function of RF (SI Appendix, Fig. S11):

	 [10]

where Ea_0 is the initial activation energy (kJ mol–1) at the start of the incubation, 
β is the increasing rate of activation energy with RF.

We optimized the model to capture the temporal changes in Q10 calculated 
under the RF gradients for each trial as well as for their average using a differential 
evolution algorithm (49). Prior ranges of the eight parameters in the model are 
shown in SI Appendix, Table S2. The root mean squared error (RMSE) between 
modeled and observed Q10 was minimized to target the optimal parameters. 
Considering potential parameter equifinality and observation uncertainty (50), 
we repeated the optimization for 200 times independently to obtain 200 ensem-
bles of model parameters. For each optimization, specifically, observations were 
sampled from the probability distribution function of observed Q10 assuming a 
normal distribution defined by their SD (σ) and mean (μ) at each measurement 
time point. For each trial and each parameter, the median of the 200 estimates 
was calculated for comparison purpose. The optimization was performed using 
the function DEoptim in the package DEoptim in R 4.0.3.

Inferring Initial Q10 and Global Digital Mapping. At the beginning of incu-
bation, the Q10 (Q10_initial) can be estimated by setting RF = 0 in Eqs. 9 and 10:

	 [11]

Correspondingly, f(Q) and f(A) can be, respectively, estimated as:

	 [12]

	 [13]

Q10 = Q10_max ⋅ f (A) ⋅ f (Q),

kMM = Vmax ⋅
S

Km + S
,

kArr = A ⋅e
−Ea
R⋅T ,

QkMM
=

Vmax_Th

Vmax_Tl

⋅

KmT
l

+ S

KmT
h

+ S
,

QkArr
= e

Ea

R
⋅

T
h
−T
l

T
l
⋅T
h ,

f (A) =
Km_Tl

+ S

Km_Th
+ S

,

f (Q) = e

Ea−Ecri
R

⋅

T
h
−T
l

T
l
⋅T
h ,

S = S0 ⋅ e
−�∙RF ,

Ea =
Ea_0 ⋅ Ecri

Ea_0 +
(

Ecri − Ea_0

)

⋅ e−�⋅RF
,

Q10_initial = Q10_max ⋅

Km_Tl
+ S0

Km_Th
+ S0

⋅ e

Ea_0−Ecri
R

⋅

T
h
−T
l

T
l
⋅T
h .

f (A)initial =
Km_Tl

+ S0

Km_Th
+ S0

,

f (Q)initial = e

Ea_0−Ecri
R

⋅

T
h
−T
l

T
l
⋅T
h .
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We estimated Q10_initial, f(A)initial, and f(Q)initial for each of the 721 soils. The esti-
mates of Q10_initial were compared with the Q10 values of soil respiration (including 
heterotrophic—Q10_Rh, and total respiration—Q10_Rs) observed in the field reported 
in ref. 28 at both global and ecosystem levels.

A random forest model was trained and validated (10-fold cross-validation) to 
predict Q10_initial. The similar techniques for controlling predictor collinearity as the 
model for interpreting Q10 in the section Temporal Dynamics of Q10 were used. To 
facilitate global scale application, the model only includes environmental predictor 
variables that are meaningful at field conditions (SI Appendix, Table S1). This may 
damage model performance but can provide more realistic estimates aligning with 
the purpose of inferring Q10 in situ. Especially, the temperature predictor in the 
model used mean annual temperature at the site location, soil depth was set to 0 
(the depth of layer top) and 30 cm (the depth of layer bottom). The validated model 
was applied in each 1-km grid across the globe using relevant global mapping 
products of the predictor variables in the model (SI Appendix, Table S1). Prediction 
uncertainty was quantified by estimating the SD of predictions from 500 randomly 
drawn trees in the fitted random forest model. The model training and global map-
ping were performed in R 4.0.3. The relevant data and code have been provided 
(see Data, Materials, and Software Availability statements).

Data, Materials, and Software Availability. Data used to generate the results 
are deposited to figshare through: (51). The field Q10 data were obtained from 
(28). Code (R scripts) used to assess the data and generate the results are depos-
ited to figshare through: (52).
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