
Strategic sampling for training a semantic segmentation model in 
operational mapping: Case studies on cropland parcel extraction

Rui Lu a,b, Ronghua Liao a,b, Ran Meng c,d, Yingchu Hu a,b, Yi Zhao b, Yan Guo e,  
Yingfan Zhang a,b, Zhou Shi a,b, Su Ye a,b,*

a State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China
b Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 
310058, China
c Artificial Intelligence Research Institute, Faculty of Computing, Harbin Institute of Technology, Harbin 150008, China
d National Key Laboratory of Smart Farm Technologies and Systems, Harbin 150008, China
e Institute of Agricultural Information Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China

A R T I C L E  I N F O

Editor: Marie Weiss

Keywords:
Semantic segmentation
Deep learning
Training samples
Balanced sampling
Transfer strategy

A B S T R A C T

Semantic segmentation of remotely sensed images has become increasingly popular for a wide range of natural 
resource and urban application, yielding promising results. To an operational semantic segmentation mapping 
project, having more samples generally enables the model to better extract target features, achieving higher 
accuracies. However, annotating remote sensing image samples for model training is a time-consuming and 
labor-intensive process. Strategic sampling aims to minimize the efforts in collecting new training samples for a 
mapping project, which has been not well studied yet for semantic segmentation. To approach this topic, we 
employed a hybrid way for combining meta-analysis and case studies to investigate the best practices for stra
tegic sampling. Three factors relating to strategic sampling will be investigated: sample size, distribution and 
transferring methods. We first reviewed 334 recently published papers that adopted semantic segmentation for 
operational mapping projects to summarize the current status of training sample design from various mapping 
scenarios. Subsequently, we constructed a large dataset of over 12,000 high-quality annotated image patches for 
cropland parcel mapping across five study sites, and evaluated various sampling strategies using a baseline 
segmentation model. We also proposed a novel balanced sampling method, which leveraged patch-based entropy 
and edge complexity to classify sample diversity. Our findings revealed that (1) both meta-analysis and the case 
studies suggested that ~4 % of the total mapping patches were the optimal training sample size under random 
sampling, i.e., the minimum size to reach accuracy saturation; (2) compared to random sampling, the newly 
proposed balanced sampling was superior due to its decreasing the required sample size from ~4 % to 2.5 % of 
the total patches in mapped areas; (3) sample transfer and model transfer present identical performance for 
relaxing the average local sample demand from 2.5 % to 0.5 % of total patches, with sample transfer being 
slightly more accurate than model transfer (Global Total-Classification errors: 0.298 vs 0.308). This study offers a 
heuristic framework for applying strategic sampling in semantic segmentation, providing valuable practical 
guidance for implementing deep learning in an operational scenario.

1. Introduction

Semantic segmentation of remotely sensed images, i.e., assigning a 
category to each pixel in an image based upon state-of-art deep learning 
models, have become the leading approach for a wide range of surveying 
tasks including agricultural field extraction (Persello et al., 2019; 
Waldner and Diakogiannis, 2020), urban sprawl detection (Kim et al., 

2024; Zhang et al., 2023), and land cover mapping (Li et al., 2020; 
Zhang et al., 2019). Benefited from the capability of learning intricate 
spatial and temporal patterns, semantic segmentation often surpasses 
traditional machine learning tasks particularly for mapping diverse and 
nuanced geographic features (Ma et al., 2019; Reichstein et al., 2019; 
Yuan et al., 2020; Persello et al., 2022). It is widely acknowledged that a 
larger training dataset could provide better exposure for various 

* Corresponding author at: State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China.
E-mail address: su.ye@zju.edu.cn (S. Ye). 

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

https://doi.org/10.1016/j.rse.2025.115034
Received 19 May 2025; Received in revised form 10 September 2025; Accepted 14 September 2025  

Remote Sensing of Environment 331 (2025) 115034 

0034-4257/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:su.ye@zju.edu.cn
www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2025.115034
https://doi.org/10.1016/j.rse.2025.115034
http://creativecommons.org/licenses/by/4.0/


geographic patterns of different scenarios to reduce the chances of 
overfitting from outliers as well as to enhance the generalization to 
unseen data (Yu et al., 2018; Bergen et al., 2019; Yuan et al., 2021; Grift 
et al., 2024). However, unlike popular image label databases in the 
computer vision domain (e.g., ImageNet, COCO) (Deng et al., 2009; Lin 
et al., 2014), the training datasets are often not universally available for 
semantic segmentation of remotely sensed images, not only because 
local geographic patterns are commonly too complicated to be repre
sented by a single dataset, but also owing to the rarity of a universal land 
category system (e.g., agricultural fields are defined differently among 
different regions) (Reichstein et al., 2019). As a result, remote sensing 
professionals are frequently required to manually generate as many new 
image patches as possible for mapping projects (Kattenborn et al., 2021), 
calling for considerable annotation efforts and budgets. It is essential for 
prioritizing a smaller, more representative training sample set, partic
ularly when the mapping region is large and acquiring training data is 
expensive.

Strategic sampling is a group of techniques for minimizing the efforts 
in collecting new training samples while keeping the accuracy uncom
promised (Brown, 2006). Traditionally, in pixel-based classification, 
previous discussions on strategic sampling surround sample size (Foody 
et al., 2006; Zhu et al., 2016; Ramezan et al., 2021; Rajput et al., 2023), 
and the distribution of samples across categories (Foody and Mathur, 
2006; Jin et al., 2014; Mellor et al., 2015). Inadequate sample size would 
suffer from an underfitting of training data and fail to cover full 
geographic variability. Though increasing sample size generally could 
enhance the performance, the accuracy curve may cease to increase after 
a certain sample size (Heydari and Mountrakis, 2018). The ideal sample 
size is the minimum number of samples required to achieve a plateau in 
accuracy curves, balancing annotation costs with model performance. 
While some literature suggests using a sample size of 10–30 times the 
number of features for a classifier (Piper, 1992; Van Niel et al., 2005), it 
is more reasonable to determine the sample number by considering the 
total area to be mapped, as it reflects landscape variability and the 
complexity of the classification scene (Stehman and Wickham, 2011; 
Olofsson et al., 2014). As such, Zhu et al. (2016) tested the training pixel 
number from 2500 to 25,000 for land cover classification of a single 
Landsat scene based on a random-forest classifier, and reported that the 
accuracy stopped increasing when the training set exceeded 20,000 
pixels, i.e., ~0.1 % of a Landsat tile. However, existing researches on 
optimal sample size have primarily focused on pixel-based samples. 
Different from pixel-based sampling scheme that traditional machine 
learning techniques mostly fall within, training samples for deep 
learning are mostly based upon small sub-images, i.e., image patches. 
For each image patch, the pixels are labeled as the classes of interest, and 
the number and shapes of land-cover classes are inherently variable. The 
different nature between image patches and pixel samples limits a direct 
knowledge transfer for sample selection from traditional machine 
learning to deep learning. In contrast to the relatively simpler model 
architecture of traditional classifiers (e.g., random forest, support vector 
machine), semantic segmentation enables a better generalization by 
stacking multiple convolutional and pooling layers with more model 
hyperparameters, thereby often requiring a larger sample size. Chen 
et al. (2024) suggested that in geographically similar regions, approxi
mately one-tenth of the data might be sufficient to train a CNN model 
effectively. However, their study did not assess the impact of varying 
sample sizes on model accuracy, and whether one-tenth represented an 
optimal sample size remained unknown. To our knowledge, most pre
vious semantic segmentation studies determined the training patch 
number based on subjective judgment or the annotation budget. It still 
lacks a heuristic to quickly estimate an economic sample size for a tar
geted mapping region without sensitivity tests.

The choice of sample distribution answers the question for how to 
assign the sample numbers to different classes. The literature consis
tently reports that balanced sampling (i.e., an equal number of samples 
per class) helps prevent model bias toward the majority class, compared 

to random or proportional sampling (i.e., assigning training samples in 
proportion to the area of each class), whereas it possibly suffers a lower 
overall accuracy (Colditz, 2015; Nguyen et al., 2020; Zhou et al., 2020). 
For example, Du et al. (2015) developed a voting-distribution ranked 
rule, which averaged multiple reliable voting distributions for each class 
to determine weights and increased the representation of minority 
classes. However, existing studies on balanced sampling methods are 
primarily based on pixel-level samples. In the context of semantic seg
mentation, there is no straightforward method for assigning sample 
numbers when using an image patch as the sampling unit, as it consists 
of multiple categories. This makes it challenging to directly apply 
balanced sampling to a semantic-segmentation task. As a result, pro
fessionals often resort to random sampling of image patches (Boschetti 
et al., 2016; Stehman et al., 2022), which can lead to poor performance 
for minority classes in imbalanced datasets and generate redundant 
samples for easily identifiable categories. Hence, there is a need for 
proposing a new balanced sampling strategy tailored for patch-based 
samples to guide sample selection for the semantic segmentation tasks.

Besides sampling design, another approach for strategic sampling is 
leveraging global samples (i.e., samples collected from the entire 
geographic region) to reduce the need for newly collected samples from 
a specific mapping region, i.e., local samples. Model transfer is such an 
approach that takes advantage of a pre-trained model from a large-scale 
dataset and fine-tunes it for a new targeted mapping region (Ma et al., 
2024; Pan and Yang, 2010; Zhao, 2017; Zhu et al., 2021). Model transfer 
unfreezes the last layers of the base model and only adjusts the higher- 
order feature representation using the new local samples, thereby 
reducing the need for large amounts of training dataset. For example, 
Wieland et al. (2023) applied a model transfer approach, enabling a pre- 
trained model to identify water bodies in remote sensing data from 
different sources. Alternatively, it is also common for transferring local 
samples to a global training dataset and then building a completely new 
deep learning model from the scratch, i.e., sample transfer (Brown et al., 
2020; Zhang et al., 2024). Sample transfer is more frequently applied in 
large-scale remote sensing mapping. For example, Brown et al. (2020)
employed training data selected from a 3 by 3 tile window where the 
central tile was the tile to be classified. Zhang et al. (2024) also com
bined the local samples from the center tile and the global samples from 
its neighborhood tiles to build a classifier for the center tile. Compared 
to model transfer, sample transfer allows for adjusting the weights of all 
layers, offering greater flexibility to adapt to a new mapping region. 
However, it often comes with higher computational costs due to the 
need to train a new model from scratch. To our knowledge, no studies 
ever comparatively reported their performances and new local samples 
required for the two transfer methods.

Aiming to minimize the effort required to collect new training 
patches, this study will explore different strategic sampling configura
tions and identify the best training sample selection practices for se
mantic segmentation, using a hybrid approach of meta-analysis and case 
studies. In this study, a sample refers to an image patch used for training 
the semantic segmentation model (specifically, a 256 × 256-pixel 
image). Sampling denotes the process of selecting patches to construct 
the training dataset. In this study, the sample size is defined as the 
relative training patch number, which is measured as the patches 
selected for training divided by the total patches to be mapped. This 
measurement helps eliminating the influence of varying image sizes and 
differences in the spatial resolution of remote sensing data. Three key 
factors in the training sample selection process were primarily investi
gated: sample size, sample distribution, and transfer methods. To 
address various semantic segmentation cases, we first performed a meta- 
analysis on 334 journal articles between 2015 and 2024, covering a 
broad range of mapping themes. This analysis summarized the general 
status on sample size, sample distribution, and transferring methods for 
semantic segmentation. Second, through five case studies of cropland 
parcel mapping, we created a large open-access training dataset con
sisted of over 12,000 high-quality labeled patches, and then evaluated 
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different sampling practices concerning sample size, distribution and 
transferring methods based upon a baseline semantic segmentation 
model. Cropland parcel mapping is often considered as a challenging 
task owing to their complex parcel forms, diversified spectral charac
teristics, and incontiguous boundaries intergraded with surrounding 
vegetation (Masoud et al., 2020; Estes et al., 2022; Lu et al., 2024), 
influenced by factors such as crop type, growth stage, soil conditions, 
and environmental variables. This makes cropland parcel mapping an 
ideal application for testing the performance of different training sample 
selection strategies for deep learning. In the past studies, various sample 
configurations have been adopted to deploy semantic segmentation for 
extracting parcel boundaries (Waldner and Diakogiannis, 2020; Turko
glu et al., 2021; Cai et al., 2023; Pan et al., 2023), which echoed the lack 
of standardized criteria for selecting training samples. To compare the 
effectiveness of different sampling practices, we will analyze the point at 
which the error curve first flattens with increasing numbers of input 
samples. An optimal method should minimize the number of training 
samples needed without compromising model performance. By 
combining meta-analysis and case studies, this work aims to provide a 
heuristic solution for strategic sampling that achieves the most cost- 
effective training sample selection. More specifically, we will answer 
the three following questions: 

(1) How many training samples in minimum are required when the 
model accuracy saturates for semantic segmentation?

(2) What is the most effective way for distributing training samples in 
the form of image patches?

(3) What is comparative performance for model and sample transfer 
in term of mitigating local sample demand?

2. Datasets and study sites

2.1. Meta-analysis data collection

Given by a vast body of current literature on semantic segmentation, 
we focused on three top remote sensing journals, i.e., Remote Sensing of 
Environment (RSE), ISPRS Journal of Photogrammetry and Remote Sensing 
(ISPRS P&RS), International Journal of Applied Earth Observation and 
Geoinformation (JAG), and two data-based journals, i.e., Scientific Data 
(SD) and Earth System Science Data (ESSD). We did not include the 
technical journals such as IEEE Transactions on Geoscience and Remote 
Sensing (TGRS), as their articles primarily focused on algorithm inno
vation rather than land-cover mapping. Their evaluated algorithms were 
based on benchmark labeling datasets (e.g., Semantic Labeling Chal
lenge datasets (Pastorino et al., 2022)), making it difficult to infer in
formation about the total patches to be mapped. Only studies that 
provided the final segmentation map for their entire study area were 
considered for sample size demand, calculated as the proportion of the 
training sample patches relative to the total patches in the mapping 
extent, namely training patch proportion. We performed an initial 
search in the Science Direct (https://www.sciencedirect.com/) or Web 
of Science (https://webofscience.clarivate.cn/) database for each jour
nal using the keyword “semantic segmentation” with a year range 
specification of “2015–2024” and an exclusion of “Review articles” 
(search date: Dec. 10, 2024). As a result, we obtained 334 journal arti
cles (RSE: 27; ISPRS P&RS: 168; JAG: 117; SD: 19; ESSD: 3, see Fig. 1). 
The complete list of the selected articles was given in Section S1 of the 
Supplementary Material. The year-over-year increase in publications 
highlighted the growing prominence of remote sensing semantic seg
mentation as a research focus (Fig. 1).

2.2. Case study sites and data

We selected cropland parcel mapping as a case study to address the 
sample selection problem in remote sensing semantic segmentation 
tasks. Since vector parcel boundaries could be derived from raster 

outputs through post-processing, our focus was on the accuracy of the 
raster-based cropland parcel representations generated by the model.

2.2.1. Study sites
We selected five typical study sites in China (Fig. 2), including Xin

jiang (XJ), Jilin (JL), Guangxi (GX), Hubei (HB), and Zhejiang (ZJ). 
Table 1 summarizes the diverse characteristics of the agricultural sys
tems across the study sites, which represent a range of scenarios for 
extracting cropland parcels from high-resolution remote sensing images. 
These study sites were selected to capture the diversity of cropland 
systems, ranging from large-scale mechanized fields to smallholder- 
based parcels, to demonstrate the generalizability of the proposed 
sample selection methods.

2.2.2. Satellite images
For each study area, we selected a scene of Gaofen-2 (GF-2) high- 

resolution imagery. The GF-2 satellite contains a panchromatic sensor 
with 1-m resolution and a multispectral sensor with 4-m resolution, 
covering a swath of 45 km with a revisiting cycle within 5 days (Chen 
et al., 2022; Tong et al., 2020). The GF-2 data can be retrieved at htt 
ps://data.cresda.cn. All images were acquired in 2022, during the 
period between crop harvest and early growth. This timing facilitated 
their distinction from surrounding features such as grasslands, and also 
allowed field roads to be clearly visible (Cheng et al., 2020). The pre
processing steps of images included radiometric calibration, atmosphere 
correction, and geometric correction. We applied the Gram-Schmidt 
Pan-Sharpening method for image fusion by resampling multispectral 
images with a high-resolution panchromatic image, resulting in 1-m 
images with four multispectral bands, i.e., blue, green, red, and near- 
infrared.

2.2.3. Labeled patch dataset
We generated a large number of high-quality labeled image patches 

for testing sampling strategies. Each GF-2 image was divided into 256 ×
256 pixel patches (Li et al., 2023; Waldner and Diakogiannis, 2020). 
From each study site, approximately 20 % of the patches were randomly 
selected, resulting in around 2500 patches per site and 12,500 patches in 
total. A team of experienced remote sensing experts manually annotated 
all crop field boundaries within each patch through visual interpreta
tion, dedicating over 1000 working hours to the annotation process. The 
labeled patches were then evenly split into two pools: a training sample 
pool (10 % of total patches), used to generate various sampling con
figurations, and a testing sample pool (10 %), used to independently 
assess model accuracy across different sampling strategies.

We have released the labeled image patches (China’s Crop Parcel 
Training Dataset, CCPTD) as a potential benchmark dataset for future 
study, which is publicly available at https://doi.org/10.5281/zenodo 
.16595511.

Fig. 1. Year of journals for the 334 referred articles for the meta-analysis.
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2.2.4. Land cover data
We used the China Land Cover Dataset (CLCD) (Yang and Huang, 

2021) as a priori of cropland percentage for the newly proposed 
balanced sampling approach. The CLCD products were made through 
feeding temporal metrics derived from Landsat images into a random 
forest classifier, with a reported overall accuracy of 79.3 %. The CLCD 
dataset provides 30-m annual land-cover products from 1990 to 2022 
for China, composed of nine land-cover classes including cropland. The 
CLCD data of the year 2022 (Fig. 1a) was selected and aligned with the 
GF-2 images to estimate cropland proportion for each image patch. The 
CLCD dataset are publicly available at https://zenodo.org/records 
/8176941.

3. Methods

3.1. Meta-analysis methodology

We recorded six sampling-related attributes for the 334 articles, 
including mapping theme, number of categories, number of training patches, 

number of total patches to be mapped, sampling distribution approach, and 
transferring method. The attribute number of training patches refers to the 
samples used for model training, whereas number of total patches to be 
mapped represents the total number of patches covering the entire 
mapping area. The training patch proportion, calculated as the ratio be
tween these two attributes, was used as an indicator of the training 
sample size relative to the total mapping area. Table 2 describes ten 
attributes that we recorded for the 334 articles. We conducted a statis
tical analysis based on ten sampling-related attributes to summarize the 
current status of sampling strategies in practical remote sensing map
ping using semantic segmentation. This meta-analysis offers valuable 
insights into the sampling practices reported across the literature. While 
our case study focuses on a typical application, the meta-analysis en
ables us to examine sample selection strategies across a broader spec
trum of remote sensing applications. This broader perspective not only 
provides a more comprehensive understanding of real-world sampling 
approaches but also helps assess the generalizability of the findings 
derived from our case studies.

Of note is that many studies did not report specific information on 

Fig. 2. The study sites with various agricultural characteristics. (a) Their locations in China. (b)-(f) The 1-m GF-2 imagery and cropland parcel examples for the five 
case study sites.
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the number of training patches or total mapping patches. If the number 
of training patches was unavailable, the study was excluded from the 
sample size statistics (i.e., attributes 5–7 in Table 2). When the number 

of training patches was reported but the total number of patches was 
missing, we estimated the latter by dividing the total number of pixels in 
the mapping area by the size of a training patch. If the total number of 
pixels was not provided, we calculated it using the reported mapping 
area and the spatial resolution of the remote sensing imagery. Studies 
lacking all these information were excluded from the sample size 
statistics.

3.2. Case study design

3.2.1. Deep learning model
Our study employed ResUNet-a model (Diakogiannis et al., 2020), an 

established deep learning model for cropland parcel extraction, which 
has shown superior performance in past studies (Waldner and Dia
kogiannis, 2020; Jong et al., 2022; Li et al., 2023). Its structure was 
presented in Fig. 3. ResUNet-a is a deep learning model built upon the 
UNet architecture (Ronneberger et al., 2015), featured by a symmetric 
encoder-decoder structure with skip connections between correspond
ing stages. This design enhances the model ability to capture contextual 
information while maintaining fine-scale details. The core design of 
ResUNet-a is the ResBlock-a module (Fig. 3b) that integrates multiple 
parallel atrous convolutions within residual block. The atrous convolu
tional branches with different dilation rates perform feature extraction 
at various receptive fields, improving identification of targets at 
different scales and locations. To enhance the model performance, 
ResUNet-a employs a pyramid scene parsing pooling (PSP pooling) layer 
between the encoder and decoder, as well as before the output layer, and 
then applies a multi-task learning to achieve more accurate cropland 
parcel extraction by leveraging the constraints between related tasks.

We employed the Tanimoto distance as the loss function during the 
training stage to aid in model convergence while maintaining a balance 
across multiple tasks (Waldner and Diakogiannis, 2020). Tanimoto loss, 
a variant of Dice loss, focuses on maximizing the overlap between pre
dicted and true labels in segmentation tasks. It provides smoother 
gradient changes during optimization, leading to more stable conver
gence (Diakogiannis et al., 2020). This results in better boundary ac
curacy and overall segmentation quality, particularly in improving the 
shape of parcels. The Tanimoto distance loss function is defined as: 

T̃(p, l) =
T(p, l) + T(1 − p,1 − l)

2
(1) 

with 

T(p, l) =
∑

i(pili)
∑

i
(
pi

2 + li2
)
−
∑

i(pili)
(2) 

Table 1 
Five case study sites for cropland parcel extraction to test performance of different sample configurations (“total patches to be mapped” denotes the total number of 
samples resulting from dividing the entire imagery into image patches).

Study 
sites

Region Image size 
(pixels)

Total patches 
to be mapped

Acquisition 
date

Agricultural system types Descriptions

XJ Northwestern 
China

45,605 ×
33,853

14,939 09/15/2022 Mechanized large-scale 
agriculture

The croplands are large and situated in flat terrain, characterized by 
highly mechanized agricultural practices. The main crops include 
cotton and wheat, primarily grown in a single season.

JL Northeastern 
China

48,883 ×
34,607

15,998 03/28/2022 Northeast Plains 
agricultural system

Croplands are evenly distributed across plain landscapes, with large- 
scale monoculture practices. Common crops include maize, soybean, 
and rice, predominantly cultivated in a single season.

GX Southwestern 
China

37,770 ×
39,527

14,981 03/12/2022 Smallholder fragmented 
agriculture

The region is mountainous, with small, irregular, and fragmented 
croplands. Typical crops include sugarcane, rice, and fruits, mostly 
grown in two seasons under smallholder management.

HB Central China 37,914 ×
24,832

8917 10/23/2022 Mixed plain and 
mountain agriculture

Croplands in this region are distributed across varied topography, 
including plains and mountainous areas. Main crops are rice, wheat, 
and rapeseed, cultivated in both single and double cropping systems.

ZJ Eastern China 35,362 ×
34,542

12,728 12/14/2022 Smallholder agriculture 
with abundant water 
systems

Croplands are fragmented and scattered, with abundant water 
supporting rice, wheat, oilseed rape and vegetables. The fields are 
managed by smallholders, with both single and double cropping 
systems practiced.

Table 2 
Ten attributes for the reviewed articles.

ID Attributes Definition Values

1 Journal Published journal of the 
paper

2 Year Year of publication
3 Mapping theme Object of remote sensing 

semantic segmentation 
mapping

1) Land cover； 
2) Agricultural; 
3) Forest; 
4) Impervious surface; 
5) Water body; 
6) Disaster; 7) Others

4 Number of 
categories

Count of distinct classes to 
be segmented in the 
semantic segmentation 
task

5 Number of 
training patches

Number of patches 
selected for model 
training

6 Number of total 
patches to be 
mapped

Number of patches to be 
mapped for a semantic- 
segmentation task

7 Training patch 
proportion

The proportion of training 
patches over the total 
patches to be mapped

8 Sampling 
distribution 
approach

The sample distribution 
strategy of the training 
samples

1) Random: samples are 
selected randomly; 
2) Balanced: samples are 
selected to ensure equal 
representation across 
classes; 
3) Systematic: samples are 
selected based on a 
predefined selection rule; 
4) No information

9 Transferring 
method

Transferring strategy used 
when validating model 
transfer capabilities or 
mapping in other regions

1) Direct use of an existing 
model; 
2) Sample transfer: model 
is trained using a mix of 
local and global samples; 
3) Model transfer: model is 
pretrained with global 
samples and then fine- 
tuned with local samples; 
4) No transfer

10 Comments Other situations 
encountered in 
information extraction
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where p presents the probability map output by the model, and l rep
resents the corresponding sample label. For multi-task learning, we used 
the average of the loss functions for all tasks: 

T̃MTL(p, l) =
T̃extent(p, l) + T̃boundary(p, l) + T̃distance(p, l)

3
(3) 

We used the AdamW optimizer (Loshchilov and Hutter, 2019) with a 
weight decay of 1 × 10− 5. The maximum number of training epochs was 
set to 200, with an initial learning rate of 1 × 10− 4. After 100 epochs, the 
learning rate decayed to 10 % of the initial value, resulting in a learning 
rate of 1 × 10− 5 for the remaining 100 epochs. The batch size was set to 
16 during training.

3.2.2. Performance evaluation
In this study, we chose the GTC (Global Total-Classification) to 

evaluate the accuracy of deep learning models with different sampling 
configuration. GTC is an object-based evaluation metric that compre
hensively assesses over-segmentation and under-segmentation errors in 
model predictions, making it well-suited for assessing both the geo
metric and thematic accuracy of parcel segmentation tasks (Li et al., 
2023; Zhao et al., 2025). GTC is formulated as follows: 

GTC =
∑n

i=1

(

ST(i) ×
area(Pi)

∑n
i=1area(Pi)

)

(4) 

with 

ST(i) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

SO(i)2
+ SU(i)2

2

√

(5) 

SO(i) = 1 −
area(Ri ∩ Pi)

area(Ri)
(6) 

SU(i) = 1 −
area(Ri ∩ Pi)

area(Pi)
(7) 

where Ri denotes the reference parcels in ground truth, Pi denotes the 
predicted parcels in model results, n represents the parcel number, SO is 
the over-segmentation error, and SU is the under-segmentation error.

We generated the GTC curve along with increasing sample sizes. The 
best sample size was identified when the GTC curve just reached the 
level-off point, which was defined as the first sample size reaching 95 % 
of the maximum accuracy, i.e., 1 − 0.95× (1 − GTCmin), following the 
practice for the semi-variogram in geostatistics (Chen and Gong, 2004; 
Garrigues et al., 2008). Given that the GTC typically decreases with an 
increasing number of training samples and eventually will be stabilized, 
its trend is analogous to an inverted semi-variogram curve, where the 
point of stabilization at which GTC first levels off corresponds to sill. 
Unlike significance testing methods (Collins et al., 2020; Foody et al., 
2006), which identify pre-defined sample sizes or accuracy thresholds, 
the variogram-based method enables us to pinpoint the exact point when 
the error curve first flattens out, even when the number of samples at 
that point is not predetermined. The Y value of the level-off point reflects 
the minimum GTC (i.e., the best model performance), while its X value is 

Fig. 3. Graphic explanation for ResUNet-a model (Diakogiannis et al., 2020). (a) The overview of the ResUNet-a architecture. (b) The ResBlock-a module that 
integrates residual connection and parallel atrous convolutions with different dilation rates. (c) PSP pooling layer.
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the minimum required sample size to reach the optimal sample size for 
the best balance between the accuracy and the annotation costs. The 
smaller X value of the level-off point indicates the less sample patches 
required to reach the best model performance.

To validate our findings, we conducted the same curve-based anal
ysis using the F₁-score, another widely used performance metric for se
mantic segmentation in the literature (the results were shown in the 
Supplementary Material). In addition, we will perform a visual compar
ative evaluation of parcel maps generated under different sampling 
configurations to confirm the accuracy of the model achieved by the 
selected best sampling strategy.

3.2.3. Experiment setup
To answer three research questions for this study, we designed three 

sub-experiments respectively for training size, sample distribution and 
transferring method (Fig. 4):

3.2.3.1. Training size. For each study site, we established a series of 
training sample sets using the proportions of training patches out of the 
total patches in mapping areas, with a step size of 0.2 % for the range 
from 0 % to 1 %, and a step size of 1 % for the range from 1 % to 10 %. 
We assessed the GTC curves under two sample distribution approaches, 
i.e., the random sampling and the newly proposed balanced sampling 
(see “sample distribution”). Their optimal training size was determined as 
the X value of the level-off point of their GTC curve.

3.2.3.2. Sample distribution. Sampling design in machine learning can 
generally be divided into three categories: random sampling, stratified 
sampling (i.e. balanced sampling), and systematic sampling (Olofsson 
et al., 2014). Systematic sampling is inherently rule-based and context- 
dependent, making it difficult to evaluate comparatively. Therefore, we 
will test the other two sample distribution approaches, random sampling 
and stratified sampling for semantic segmentation. Existing stratified 
sampling methods for semantic segmentation studies often used arbi
trary definition for patch-based stratum. For example, Qurratulain et al. 
(2023) interpreted the majority category for each training patch and 
then assigned higher weights for those patches dominated by minority 

category. Also, focusing solely on categorical attributes overlooked the 
morphological complexity of the geographic features. For this study, we 
proposed a new stratified sampling to balance the training patch selec
tion, hereafter named as balanced sampling. We defined training strata 
based upon two patch-based features: thematic entropy (H) and edge 
complexity (E). Thematic entropy captures the amount of information 
related to the categorical composition within each patch, while edge 
complexity quantifies the structural intricacy of object boundaries. 
Together, these two features characterize training patches from com
plementary perspectives, i.e., thematic and morphological measure
ment. Entropy calculation requires external data that provide prior 
knowledge about the class distribution, whereas edge complexity can be 
derived directly using edge detection algorithms, without the need for 
additional input data.

Fig. 5 illustrates the process of the proposed balanced sampling. The 
thematic entropy reflects the variation of map categories, and the patch 
with low entropy has more uniform pixel labels. We derived a rough 
estimation of the cropland percentage from a prior crop product (i.e., the 
CLCD product), which often exists for most remote sensing applications, 
and then calculated the thematic entropy (H) using the following 
formula: 

H = −
∑n

i=1
PilogPi (8) 

where n presents the number of categories to be classified, and P denotes 
the proportion of each category. Based on the geographic coordinates of 
each training sample, the corresponding area in the land-cover product 
was identified to obtain land-cover data for that sample. Even though 
the spatial resolutions of the two datasets differ, aligning them by 
sample extent ensures that the land-cover data can still capture the 
proportion of cropland within the sample region. Edge complexity refers 
to the level of detail or intricacy in the boundaries (edges) of objects 
within an image. We computed edge complexity by calculating edge 
length after applying the Canny edge detection algorithm (Turker and 
Kok, 2013). We divided each feature into three groups using quantile- 
based thresholds, resulting in nine strata for the image patches with 
two features. These strata represented different cropland patterns. For 

Fig. 4. The experiment design for exploring best practices for the three key factors of strategic sampling for semantic segmentation: 1) training size, 2) sample 
distribution, and 3) transferring method.
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example, “low entropy – low edge complexity” corresponded to large- 
scale industrial cropland or non-agricultural areas with clean edges, 
while “high entropy – high edge complexity” referred to complex re
gions where scattered, small-scale croplands were interwoven with non- 
cropland backgrounds. The newly proposed balanced sampling will 
assign an equivalent number of training patches to each stratum, 
ensuring a high diversity of training patches, based upon the hypothesis 
that the more diversified and representative sample patches could 
reduce the demand of the total training samples needed. We will test the 
random and proposed balanced sampling, and compare the differences 
of level-off point location for the two approaches.

The code script for our proposed balanced sampling method is 
publicly available at https://github.com/Remote-Sensing-of-Land-Re 
source-Lab/Training-Sample-Selection.

3.2.3.3. Transferring methods. Based on the optimal training size and 
distribution strategy, we created the sample set for each site. To evaluate 
data and model transfer performance, we designated and rotated one of 
the five study sites as the local sample pool, with all samples from the 
remaining four sites serving as the global pool. This allowed for sample 
transfer and model transfer to be applied and assessed five times, each 
time using a different site as the testing region. For each site, we 
incrementally increased the training patch number from the local sam
ple pool from 0 to 3.0 %, generated a series of semantic segmentation 
models from applying different transferring methods for the mixture of 
the subsets of the local pool and the global pool. We compared three 
approaches: no transfer, sample transfer, and model transfer. No transfer 
refers to training a model from scratch at the target site without any 
transfer strategy, using the previously described balanced sampling 
method to select training samples. Sample transfer involves combining 
local and global samples to form a new training set for training a deep 
learning model. Model transfer, by contrast, follows a transfer learning 
paradigm, where a pre-trained model is adapted to the target domain. 
This approach entails training a pre-trained model using global samples, 
after which the encoder parameters are frozen and only the decoder 
parameters are fine-tuned using local samples from the specific site to be 
tested. Specifically, the pre-trained model was first trained using global 
samples for 1000 rounds, and then fine-tuned on local samples for 100 
rounds. During fine-tuning, the encoder parameters were kept frozen, 
and the decoder parameters were updated using a learning rate of 10− 5. 
We applied the same GTC curve as the evaluation tool for the compar
ative performance of the two transferring methods based upon an out-of- 
bag testing sample set. The better transferring method should require 
fewer local samples to reach its GTC level-off point.

4. Results

4.1. Meta-analysis results

Fig. 6 summarizes the meta-analysis on sematic segmentation for 
remote sensing applications. For sample size, 102 out of the 334 articles 
provided explicit information on the proportion of training patches over 
the total mapping area (Fig. 6a). The training patch proportion for se
mantic segmentation concentrated on either very small (“0–1 %”) or 
very large sample sizes (“>20 %”), with a median of 4.2 % total patches. 
We identified that the distribution strategies for semantic segmentation 
were dominated by random sampling which was adopted by more than 
half of the studies (51.1 %) (Fig. 6b). Some articles employed systematic 
sampling methods by formulating specific rules to mitigate this imbal
ance caused by random sampling (Chen et al., 2020). A very small 
proportion of studies (5.2 %) adopted a balanced sampling approach 
(Descals et al., 2021; Liu et al., 2023; He et al., 2024; Zhao et al., 2024). 
For example, Zhao et al. (2024) used stratified sampling, categorizing 
samples by time and changes in areas, selecting 300 training samples for 
each category to avoid imbalanced sampling. For transferring methods 
(Fig. 6c), only 7.9 % of the articles adopted either model or sample 
transfer to reduce sample annotation efforts, while 27.0 % of the articles 
chose the direct use of the model trained from somewhere else. This 
highlighted that the transferring method was still an emerging topic that 
required in-depth investigation. In general, model transfer was more 
commonly used (5.9 %) than sample transfer (2.0 %). Sample transfer 
was employed mainly for a large-scale mapping (e.g., Zhou and Weng, 
2024). Moreover, a variety of mapping themes were identified (Fig. 6d), 
including “impervious surfaces” (26.7 %), “land cover” (25.1 %), and 
“agriculture” (10.0 %), which reflected a wide range of mapping themes 
in our survey to identify current states of strategic sampling.

Lastly, among the articles reporting training patch proportion, bi
nary classification tasks were slightly more common than multi-class 
classification tasks (Fig. 6e). The binary classification tasks in remote 
sensing semantic segmentation included the extraction of ground objects 
such as buildings (Zhou and Weng, 2024), cropland parcels (Waldner 
and Diakogiannis, 2020), and water bodies (Hertel et al., 2023), while 
multi-class classification tasks mainly focused on the land cover classi
fication (Xiong et al., 2024) and crop type classification (Cai et al., 
2024). Surprisingly, we found no obvious correlations between the 
training patch proportion and the category number to be classified 
(Fig. 6f). The median training patch proportion in binary classification 
studies was even higher than that in multi-classification studies, indi
cating that the increase of category number did not necessarily lead to 
the increase of training samples.

Fig. 5. The process of the proposed balanced sampling. The balanced sampling defines nine strata by two-dimensional measurements, i.e., thematic entropy and edge 
complexity, and then assigns training patches to each stratum using quantile-based thresholds. HH: High thematic entropy. MH: Medium thematic entropy. LH: Low 
thematic entropy. HE: High edge complexity. ME: Medium edge complexity. LE: Low edge complexity.
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4.2. Case study results

4.2.1. Training size and sample distribution
Fig. 7 presents the GTC curves with increasing training size using the 

newly proposed balanced and random sampling methods for five case 
studies of cropland parcel mapping. As the number of training sample 
patches increased, the GTC value gradually decreased until they levelled 
off, with the dashed line indicating where the level-off point, i.e., 1 −

0.95× (1 − GTCmin), was first reached. For most study sites, the GTC for 
balanced sampling (blue curve) reached the level-off point earlier than 
for random sampling (orange curve), as indicated by the blue dashed 
line on the x-axis being to the left of the orange dashed line. The distance 
between the two dashed lines on the x-axis reflected the difference in the 
minimum required training patch proportion between the two sampling 
schemes. In the XJ and GX study areas, the differences in required 
sample size between the two sampling methods were relatively small. 
This was attributed to the geographically consistent morphological 
patterns of cropland parcels in the remote sensing images, which 
resulted in a limited level of sample imbalance even under random 

sampling. The XJ study area required the fewest training samples due to 
its relatively simple parcel morphology, characterized by large, regu
larly shaped cropland parcels. Overall, the results suggested that the 
proposed balanced sampling method generally required fewer sample 
patches to train a satisfactory model compared to random sampling.

Table 3 summarizes the minimum training patch proportion for the 
level-off point and its corresponding GTC value, highlighting the supe
riority of the proposed balanced sampling method. The optimal training 
patch proportion for random sampling (3.3 %) was lower than the 
average training size summarized from the meta-analysis (4.2 %, see 
Fig. 6a). Compared to the random sampling method, the proposed 
balanced sampling strategy reduced the required training patch pro
portion from 3.3 % to 2.5 %, resulting in a reduction of approximately 
25 % in sample annotation workload. Despite fewer samples used for 
model training, the balanced sampling achieved the level-off GTC 
almost identical to random sampling on average (0.257 vs. 0.267).

Fig. 8 confirms our findings from the predicted parcel maps using 
two sampling strategies with their optimal sample sizes. The random 
sampling method used 3.3 % of the total patches for training, while the 

Fig. 6. Results of the meta-analysis after extracting information from the selected papers. (a) Distribution and statistical analysis of training patch proportion, (b) 
sample distribution, (c) transferring method, (d) mapping theme, (e) class types, and (f) training patch proportions across different categories.
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Fig. 7. Impacts of training sample size and distribution on model accuracy across five study areas. The blue line represents the proposed balanced sampling and the 
orange line represents the random sampling. The dashed line at the y-axis indicates the first point when GTC levels off. The dashed line at the x-axis represents the 
proportion of total patches as training sizes for the level-off point. The closer to the origin means the less samples needed to reach the level-off point. XJ: Xinjiang; JL: 
Jilin; GX: Guangxi; HB: Hubei; ZJ: Zhejiang. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

Table 3 
The minimum training patch proportion when GTC reaches the level-off point and its corresponding GTC value for the five study sites. XJ: Xinjiang; JL: Jilin; GX: 
Guangxi; HB: Hubei; ZJ: Zhejiang.

Sample distribution XJ JL GX HB ZJ Average

Minimum training patch proportion (%) for the level-off GTC Random sampling 0.9 3.3. 3.7 4.7 4.0 3.3
Balanced sampling 0.8 2.5 3.5 2.9 2.6 2.5

Level-off GTC Random sampling 0.150 0.280 0.345 0.312 0.250 0.267
Balanced sampling 0.148 0.274 0.335 0.307 0.222 0.257
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balanced sampling method used only 2.5 %. Both methods achieved 
comparable performance in delineating cropland parcels, as visually 
observed from predictions. Despite using approximately 25 percentage 
of fewer training samples, the balanced sampling strategy produced 
result maps that were nearly identical to those generated by the random 
sampling method. We chose the balanced sampling with its optimal 
training sample size (2.5 % of total patches in mapped areas) as the best 
configuration for the next stage of the transferring test.

4.2.2. Transferring methods
Fig. 9 and Table 4 compare the GTC error curves and level-off points 

for three strategies: sample transfer, model transfer, and training solely 
with local samples (i.e., no transfer). When the number of local training 
samples was limited, both transfer-based methods yielded lower GTC 
errors than the no-transfer approach, benefiting from the inclusion of 
global samples. However, as the volume of local training data increased, 
the performance of the no-transfer model gradually surpassed that of 
both transfer strategies. This suggested that in data-rich scenarios, 
transfer methods might introduce conflicting information between 
global and local samples, ultimately reducing segmentation accuracy.

The average local training patch proportion required to reach the 
level-off point was 0.5 % for both sample and model transfer, only one- 
fifth of the requirement under the no transfer strategy, which reached 
the level-off at 2.5 %. However, this efficiency came with a trade-off: 
both transfer methods resulted in higher average level-off GTC values 
(0.298 for sample transfer and 0.308 for model transfer) compared to no 
transfer (0.257). This implied that while transfer strategies were ad
vantageous in low-data settings, they might slightly compromise accu
racy due to the inclusion of out-of-region global samples.

Between the two transfer approaches, sample transfer achieved 
slightly better model performance than model transfer (0.298 vs. 0.308), 
despite their same optimal sample sizes. This might be attributed to the 
fact that sample transfer trained the model from scratch, allowing better 
integration of local and global data, whereas model transfer fine-tuned 
only the decoder parameters of a pre-trained model, potentially 
limiting its adaptability.

4.2.3. Implications of training sample size for parcel products
Fig. 10 illustrates the cropland parcel extraction results based on full- 

scene imagery from the JL and ZJ study sites. We conducted experiments 
using the balanced sampling strategy under three training patch pro
portion scenarios: sparse (0.5 %), optimal (2.5 %), and excessive (10.0 
%) of the total patches to be mapped. The model trained with 0.5 % of 
the data exhibited noticeable omission errors and poor boundary 
extraction. In contrast, the outputs from the 2.5 % and 10.0 % training 
sizes were visually similar, indicating that increasing the sample size 
beyond the optimal level provided no substantial improvement. We 
further evaluated key parcel-level statistics for each scenario, i.e., the 
number of cropland parcels, average parcel area, and total cropland 
area. The results for the 2.5 % and 10.0 % cases displayed highly 
consistent patterns, reinforcing the conclusion that their mapping 
quality was comparable.

4.2.4. Summary
Fig. 11 summarizes the results where optimal components were 

systematically added for strategic sampling to analyze how their addi
tion impacted the required sample sizes and GTC values. It started from a 
random sampling of image patches which averagely required 3.3 % of 
total patches in mapped areas as training sample size to reach the GTC 
level-off point. The preferred distribution strategy, the newly proposed 
balanced sampling, could reduce the number of samples required for 
semantic segmentation model training from 3.3 % to 2.5 %, and also 
slightly reduced GTC errors (0.267 vs 0.258). Sample transfer would 
greatly reduce the local training sample demand, resulting in 0.5 % of 
total patches in mapped areas as the final local sample size, although it 
caused the GTC to increase from 0.258 to 0.298. We recommend using 
balanced sampling generally. However, when the cost of sample anno
tation is prohibitively high, applying sample transfer could significantly 
reduce annotation workload, albeit with a slight decrease in accuracy.

Besides, we applied the same analysis procedure based upon F1-score 
curve. The results were almost the same as using the GTC curve 
(balanced vs. random sampling: 2.5 % vs. 3.5% % for minimum required 
training area; sample vs. model transfer: 0.6 % vs. 0.7 % for optimal 
training patch proportion). For the details, please refer to Section S2 of 

Fig. 8. Cropland parcel extraction results using 3.3 % training samples selected by random sampling and 2.5 % by balanced sampling. XJ: Xinjiang; JL: Jilin; GX: 
Guangxi; HB: Hubei; ZJ: Zhejiang.
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the Supplementary Material.

5. Discussion

5.1. Training size

The meta-analysis of various semantic segmentation applications 
and case studies on cropland parcel mapping consistently demonstrated 
that approximately 4 % of the total patches were the optimal training 
size when the most commonly used patch-based sampling scheme, 
random sampling, was applied. The training size directly impacts the 
costs in terms of sample annotation, as larger datasets require more 
labeled examples, often leading to higher manual effort or the need for 
automated labeling tools. Additionally, redundant sample prepara
tion—where duplicate or overly similar data is included—can unnec
essarily inflate the budget, as it fails to provide aids in improving model 

performance while still requiring resources for annotation and storage. 
Admittedly, the “best” sample size is not a one-size-fits-all scenario. A 
variety of factors, beyond the total patches to be mapped, influence the 
optimal size of the training dataset, including geographic variability of 
the target, image resolution, and seasonal fluctuations. Our study pro
vides an important heuristic to quickly determine the optimal sample 
size that strikes the balance between sample size and model perfor
mance, serving as a powerful tool for initiating operational mapping 
projects with minimal upfront data. It would allow for more informed 
decision-making, especially in time-sensitive or resource-constrained 
projects where preliminary tests might not be feasible.

The meta-analysis revealed an unusual pattern in which most studies 
utilized either less than 1 % or more than 20 % of available data as 
training samples (Fig. 6a). This bimodal distribution may be explained 
by two main factors. First, in many existing studies, the size of the 
training dataset is primarily constrained by data acquisition and 

Fig. 9. Impacts of local training size and transferring method on model accuracy for five study sites. The local training patch proportion represents the proportion of 
patches selected for training from the site to be mapped over the total patches of the same site. The dashed line on the y-axis indicates the level-off point that first 
reaches 95 % of the maximum accuracy. The dashed line on the x-axis represents the minimum number of local samples required for the model to reach the level-off 
point. No transfer requires much higher sample size to reach its level-off point than sample and model transfer. XJ: Xinjiang; JL: Jilin; GX: Guangxi; HB: Hubei; 
ZJ: Zhejiang.

Table 4 
The minimum local training sample size and its level-off GTC value for different transferring methods. XJ: Xinjiang; JL: Jilin; GX: Guangxi; HB: Hubei; ZJ: Zhejiang.

Transfer strategy XJ JL GX HB ZJ Average

Minimum training patch proportion (%) for level-off GTC No transfer 0.8 2.5 3.5 2.9 2.6 2.5
Sample transfer 0.5 0.4 0.5 0.4 0.5 0.5
Model transfer 0.5 0.4 0.5 0.5 0.4 0.5

Level-off GTC No transfer 0.148 0.274 0.335 0.307 0.222 0.257
Sample transfer 0.192 0.311 0.370 0.347 0.268 0.298
Model transfer 0.202 0.317 0.384 0.355 0.282 0.308
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Fig. 10. Effects of different training sample sizes on regional mapping. Taking (a) JL and (b) ZJ study sites as examples, cropland parcel extraction results based on 
remote sensing imagery were presented using sparse (0.5 %), optimal (2.5 %), and excessive (10.0 %) training sample proportions. The number of cropland parcels, 
average parcel area, and total cropland area within the image extent were summarized.
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annotation costs, rather than determined by the number of target clas
ses. Consequently, there is no consistent correlation between the num
ber of training samples and the number of classification categories 
reported in the literature. Second, current semantic segmentation re
searches tend to follow two distinct directions: few-shot learning, which 
focuses on model performance with minimal labeled data, and large- 
scale training, which relies on extensive annotated datasets. This 
divergence has contributed to the clustering of studies at both extremes 
of the sample size spectrum. The emergence of this pattern underscores 
the absence of standardized guidelines for determining training sample 
sizes in remote sensing applications, highlighting the relevance and 
necessity of our investigation.

In multi-class classification scenarios, it has been suggested that the 
training sample size should increase proportionally with the number of 
categories to ensure adequate representation for each class (Foody et al., 
2006). However, our meta-analysis did not reveal clear evidence sup
porting this assumption in the context of semantic segmentation. In 
contrast, we observed that binary classification tasks tended to utilize a 
larger proportion of training samples than multi-class tasks (Fig. 6f). 
This trend likely reflects the fact that the most influential factor deter
mining sample size is the available annotation resources, rather than the 
number of target categories. Given that binary classification tasks typi
cally involve simpler and less time-consuming labeling processes, they 
can accommodate more training samples within the same annotation 
budget. A rigorous assessment of the relationship between the number of 
categories and the required training sample size with an assumption on 
unlimited annotation resources would be excessively complex and falls 
beyond the scope of this study. Future research is needed to determine 
whether optimal training sample sizes scale proportionally with the 
number of categories in semantic segmentation tasks. For example, if 
2.5 % of the total image patches are sufficient for a balanced binary 
classification task, a seven-class task might require approximately 8.8 % 
of the patches for training (2.5 % / 2 × 7 = 8.8 %). This hypothesis, 
however, remains to be empirically validated.

5.2. Sample distribution

Random sampling is the dominant approach for generating training 
image patches for semantic segmentation in past studies. More than half 
of the studies used random sampling from our meta-analysis, owing to 
its simplicity and ease of implementation. However, random sampling 
can lead to repetitive or highly similar patches, which do not add much 
new information to the model and could cause certain classes to be 
underrepresented. We proposed the new diversity-based balanced 

sampling specifically for image patches, which distributed the even 
sample number into several patch strata defined by object edges and 
categorical proportion from a priori map. From five case studies (Fig. 7), 
we observed that the new balanced-sampling approach generally 
reached the accuracy level-off point earlier than random sampling, and 
reduced the sample size demand from 3.3 % to 2.5 % of the total mapped 
region. Also, the balanced sampling reached a slightly lower level-off 
GTC error (0.257 vs. 0.267), as such diversity-based sampling captures 
the variance in the data and prevents overfitting to a specific region of 
the feature space. It is simple to expand balanced sampling for multi- 
class scenarios in terms of various patch-based deep-learning applica
tions. Therefore, the new balanced sampling is recommended for future 
practice of strategic sampling.

The proposed balanced sampling method relies on existing land 
cover products to obtain categorical proportion priors. Our meta- 
analysis revealed that most mapping themes, such as impervious sur
faces, land cover, agriculture, forest, and water bodies, were well sup
ported by existing remote sensing products. Cases where no prior 
information is available are relatively rare. For specific applications 
lacking such products (e.g., disaster mapping or greenhouse extraction), 
users can either rely on the single indicator of edge complexity or adopt 
a fallback strategy by randomly selecting approximately 4 % of the total 
samples. While this may increase data preparation costs or introduce 
some sampling bias, the negative impacts could be minimal, thereby 
preserving the overall practicality of the method even in the absence of 
prior data. The accuracy of the existing products is another possible 
factor for compromising the effectiveness of the balanced sampling 
through affecting the estimate of categorial proportion for patch-based 
entropy. However, it is important to note that the entropy calculation 
relies solely on the pixel quantity of each class, rather than the precise 
spatial distribution. Therefore, the use of an existing land cover product, 
even one with moderate spatial accuracy or a coarser resolution, re
mains an effective strategy for guiding sample selection, provided that 
the quantity errors are not excessively high.

5.3. Transferring method

Transferring methods have demonstrated their superiority for 
reducing sample preparation, but only were used in 7.9 % of the past 
semantic segmentation studies from our meta-analysis. Our case studies 
showed that the model transfer and the sample transfer presented an 
equal performance for decreasing the demand of the local samples from 
2.5 % to 0.5 %, only a quarter of the optimal sample number when no 
transfer was applied. Sample transfer exhibited a slightly lower GTC 

Fig. 11. Comparison of the results for random sampling, balanced sampling, and sample transfer. (a) The local sample size required to reach GTC level-off point as 
the proportion of the total patches to be mapped. (b) The level-off GTC values for the minimum local sample size.

R. Lu et al.                                                                                                                                                                                                                                       Remote Sensing of Environment 331 (2025) 115034 

14 



error (0.298 vs 0.308), benefiting from its process of rebuilding the 
model from scratch with more flexibility in tuning the weights of all 
hidden layers, making it the preferred approach for this study. Sample 
transfer is ideal when a large amount of labeled data is available in the 
source domain, but needs to be transferred to a target domain where 
data is sparse—a common scenario in remote sensing applications. 
However, if the source and target domains are too dissimilar in terms of 
data distributions, feature types, or underlying structures, the trans
ferred samples may not be as effective, potentially resulting in poor 
generalization. On the other hand, model transfer leverages the gener
alization capabilities of a model that has already learned to detect basic 
features from a large dataset, considerably reducing training time and 
computational resources. However, its performance heavily depends on 
the quality of the pre-trained model. If a pre-trained model has been 
built with a large, representative dataset and computational resources 
are limited, model transfer is recommended because it significantly re
duces computation costs. In other situations, particularly when global 
samples from similar domains are available, sample transfer is preferred 
due to the higher accuracy achieved by developing a deep learning 
model from the scratch.

5.4. Generalizability

We used cropland parcel extraction as a case study to investigate 
strategic sampling approaches for remote sensing semantic segmenta
tion tasks. As a representative semantic segmentation challenge, crop
land parcel extraction involves substantial variation in parcel size, 
shape, and spectral characteristics across regions, making it broadly 
reflective of the complexities faced in many segmentation applications. 
The five study areas selected for this analysis are distributed across 
diverse geographic regions of China, each exhibiting distinct landscapes 
and agricultural systems. For example, the XJ region is characterized by 
mechanized agriculture, resulting in large, regularly shaped parcels, 
whereas the GX region, located in the hilly terrain of southwestern 
China, is dominated by smallholder farming, producing fragmented and 
irregular parcels (Fig. 2). Our experiments demonstrated that the pro
posed balanced sampling approach consistently reduced annotation 
effort compared to conventional random sampling across all five re
gions, highlighting its broad applicability.

To ensure comparability across different spatial resolutions, training 
sample size was measured as the proportion of training patches rather 
than absolute pixel counts. Also, the strategy was specifically designed 
for regional mapping tasks, where geographic and cropland character
istics tended to be relatively homogeneous, minimizing generalization 
issues. For large-scale mapping efforts, we recommend first performing 
geographic stratification and then applying the strategic sampling 
method within each sub-region to construct effective training datasets.

It is important to note that evaluating strategic sampling across all 
possible segmentation tasks within a single study is nearly impossible. 
To address this limitation, we conducted a meta-analysis encompassing 
a broader range of remote sensing applications. This meta-analysis 
reviewed sample selection practices across various classification tasks, 
including impervious surface mapping, land cover classification, and 
agricultural monitoring. Over half of the studies employed random 
sampling, with a median training sample proportion of approximately 4 
% (Fig. 6). In our case study, the optimal training sample proportion 
under random sampling was 3.3 %, which was slightly lower but closely 
aligned with the meta-analysis result. This strong consistency between 
the meta-analysis and our case study suggested that the conclusions 
drawn from our study could be generalizable to other semantic seg
mentation tasks. While the meta-analysis offered limited insight into the 
comparative performance of different sampling strategies and transfer 
learning methods, our local experiments addressed these two critical 
issues using one of the most representative segmentation tasks, i.e., 
cropland parcel extraction.

Admittedly, the optimal sample size may vary depending on the 

specific segmentation objectives, landscape characteristics, and data 
sources. A more rigorous way would be to visualize the learning curve 
where increasing the dataset size yields diminishing improvements in 
model performance and then to pinpoint the optimal dataset size that 
just makes the performance plateau. Nevertheless, to find this optimal 
size, it would require the professionals to annotate the unnecessary 
sample patches to evaluate the sample size much larger than the level-off 
point. Our recommendations, i.e., balanced sampling using 2.5 % of the 
total mapping region or sample/model transfer using 0.5 %, offer an 
important baseline for users to test the optimal sample size for their own 
applications. These findings are especially valuable for time-sensitive or 
resource-constrained projects, where conducting a full parameter 
sensitivity analysis may not be feasible.

6. Conclusion

This study combined meta-analysis on 334 papers from various 
remote sensing applications and case studies of cropland parcel extrac
tion to explore the best practices for strategic sampling for semantic 
segmentation, mainly focusing on three key factors: training size, sam
ple distribution and transferring methods. The meta-analysis and case 
studies both identified ~4 % of the total mapping patches is the optimal 
training size. The patch-based balanced sampling newly proposed in this 
study, which takes account of category entropy and edge complexity, 
could further decrease the sample demand to 2.5 %, compared to 
random sampling which was adopted in over half of the papers in our 
survey. While transferring methods were only used in 7.9 % of the pa
pers, our case studies showed that sample and model transfer could 
considerably reduce the required local sample size from 2.5 % (i.e., the 
sample demand for balanced sampling) to 0.5 % of the total mapping 
patches, with sample transfer being slightly more accurate than model 
transfer (GTC errors: 0.298 vs 0.308). This finding suggests transferring 
methods have great potential for decreasing the amount of new training 
dataset, despite the decreased model performance. By leveraging both 
the meta-analysis and the representative case study of cropland parcel 
extraction, our strategic sampling recommendations have the potential 
to be generalized to other remote sensing mapping tasks. Targeted on an 
operational mapping project based upon semantic segmentation, this 
study will provide important guidance to minimize the cost of training 
data collection while maintaining or even improving model’s accuracy.
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Persello, C., Wegner, J.D., Hänsch, R., Tuia, D., Ghamisi, P., Koeva, M., Camps-Valls, G., 
2022. Deep learning and earth observation to support the sustainable development 
goals: current approaches, open challenges, and future opportunities. IEEE Geosci. 
Remote Sens. Mag. 10, 172–200. https://doi.org/10.1109/MGRS.2021.3136100.

Piper, J., 1992. Variability and bias in experimentally measured classifier error rates. 
Pattern Recogn. Lett. 13, 685–692. https://doi.org/10.1016/0167-8655(92)90097- 
J.

Qurratulain, S., Zheng, Z., Xia, J., Ma, Y., Zhou, F., 2023. Deep learning instance 
segmentation framework for burnt area instances characterization. Int. J. Appl. Earth 
Obs. Geoinf. 116, 103146. https://doi.org/10.1016/j.jag.2022.103146.

Rajput, D., Wang, W.-J., Chen, C.-C., 2023. Evaluation of a decided sample size in 
machine learning applications. BMC Bioinformatics 24, 48. https://doi.org/ 
10.1186/s12859-023-05156-9.

Ramezan, C.A., Warner, T.A., Maxwell, A.E., Price, B.S., 2021. Effects of training set size 
on supervised machine-learning land-cover classification of large-area high- 
resolution remotely sensed data. Remote Sens 13, 368. https://doi.org/10.3390/ 
rs13030368.

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., 
Prabhat, 2019. Deep learning and process understanding for data-driven earth 
system science. Nature 566, 195–204. https://doi.org/10.1038/s41586-019-0912-1.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for 
biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., 
Frangi, A.F. (Eds.), Medical Image Computing and Computer-Assisted Intervention – 
MICCAI 2015. Lecture Notes in Computer Science. Springer International Publishing, 
Cham, pp. 234–241. https://doi.org/10.1007/978-3-319-24574-4_28.

Stehman, S.V., Wickham, J.D., 2011. Pixels, blocks of pixels, and polygons: choosing a 
spatial unit for thematic accuracy assessment. Remote Sens. Environ. 115, 
3044–3055. https://doi.org/10.1016/j.rse.2011.06.007.

Stehman, S.V., Mousoupetros, J., McRoberts, R.E., Næsset, E., Pengra, B.W., Xing, D., 
Horton, J.A., 2022. Incorporating interpreter variability into estimation of the total 
variance of land cover area estimates under simple random sampling. Remote Sens. 
Environ. 269, 112806. https://doi.org/10.1016/j.rse.2021.112806.

Tong, X.-Y., Xia, G.-S., Lu, Q., Shen, H., Li, S., You, S., Zhang, L., 2020. Land-cover 
classification with high-resolution remote sensing images using transferable deep 
models. Remote Sens. Environ. 237, 111322. https://doi.org/10.1016/j. 
rse.2019.111322.

Turker, M., Kok, E.H., 2013. Field-based sub-boundary extraction from remote sensing 
imagery using perceptual grouping. ISPRS J. Photogramm. Remote Sens. 79, 
106–121. https://doi.org/10.1016/j.isprsjprs.2013.02.009.

Turkoglu, M.O., D’Aronco, S., Perich, G., Liebisch, F., Streit, C., Schindler, K., Wegner, J. 
D., 2021. Crop mapping from image time series: deep learning with multi-scale label 
hierarchies. Remote Sens. Environ. 264, 112603. https://doi.org/10.1016/j. 
rse.2021.112603.

Van Niel, T.G., McVicar, T.R., Datt, B., 2005. On the relationship between training 
sample size and data dimensionality: Monte Carlo analysis of broadband multi- 
temporal classification. Remote Sens. Environ. 98, 468–480. https://doi.org/ 
10.1016/j.rse.2005.08.011.

Waldner, F., Diakogiannis, F.I., 2020. Deep learning on edge: extracting field boundaries 
from satellite images with a convolutional neural network. Remote Sens. Environ. 
245, 111741. https://doi.org/10.1016/j.rse.2020.111741.

Wieland, M., Martinis, S., Kiefl, R., Gstaiger, V., 2023. Semantic segmentation of water 
bodies in very high-resolution satellite and aerial images. Remote Sens. Environ. 
287, 113452. https://doi.org/10.1016/j.rse.2023.113452.

Xiong, S., Zhang, X., Lei, Y., Tan, G., Wang, H., Du, S., 2024. Time-series China urban 
land use mapping (2016–2022): an approach for achieving spatial-consistency and 
semantic-transition rationality in temporal domain. Remote Sens. Environ. 312, 
114344. https://doi.org/10.1016/j.rse.2024.114344.

Yang, J., Huang, X., 2021. The 30 m annual land cover dataset and its dynamics in China 
from 1990 to 2019. Earth Syst. Sci. Data 13, 3907–3925. https://doi.org/10.5194/ 
essd-13-3907-2021.

Yu, H., Yang, Z., Tan, L., Wang, Y., Sun, W., Sun, M., Tang, Y., 2018. Methods and 
datasets on semantic segmentation: a review. Neurocomputing 304, 82–103. https:// 
doi.org/10.1016/j.neucom.2018.03.037.

Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., Xu, H., Tan, W., Yang, Q., Wang, J., 
Gao, J., Zhang, L., 2020. Deep learning in environmental remote sensing: 
achievements and challenges. Remote Sens. Environ. 241, 111716. https://doi.org/ 
10.1016/j.rse.2020.111716.

Yuan, X., Shi, J., Gu, L., 2021. A review of deep learning methods for semantic 
segmentation of remote sensing imagery. Expert Syst. Appl. 169, 114417. https:// 
doi.org/10.1016/j.eswa.2020.114417.

Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., Atkinson, P.M., 2019. Joint 
deep learning for land cover and land use classification. Remote Sens. Environ. 221, 
173–187. https://doi.org/10.1016/j.rse.2018.11.014.

Zhang, Q., Zhang, Z., Xu, N., Li, Y., 2023. Fully automatic training sample collection for 
detecting multi-decadal inland/seaward urban sprawl. Remote Sens. Environ. 298, 
113801. https://doi.org/10.1016/j.rse.2023.113801.

Zhang, X., Zhao, T., Xu, H., Liu, W., Wang, J., Chen, X., Liu, L., 2024. GLC_FCS30D: the 
first global 30&thinsp;m land-cover dynamics monitoring product with a fine 
classification system for the period from 1985 to 2022 generated using dense-time- 
series Landsat imagery and the continuous change-detection method. Earth Syst. Sci. 
Data 16, 1353–1381. https://doi.org/10.5194/essd-16-1353-2024.

Zhao, W., 2017. Research on the deep learning of the small sample data based on transfer 
learning. AIP Conf. Proc. 1864, 020018. https://doi.org/10.1063/1.4992835.

Zhao, W., Lyu, R., Zhang, Jinming, Pang, J., Zhang, Jianming, 2024. A fast hybrid 
approach for continuous land cover change monitoring and semantic segmentation 
using satellite time series. Int. J. Appl. Earth Obs. Geoinf. 134, 104222. https://doi. 
org/10.1016/j.jag.2024.104222.

Zhao, H., Wu, B., Zhang, M., Long, J., Tian, F., Xie, Y., Zeng, H., Zheng, Z., Ma, Z., 
Wang, M., Li, J., 2025. A large-scale VHR parcel dataset and a novel hierarchical 
semantic boundary-guided network for agricultural parcel delineation. ISPRS J. 
Photogramm. Remote Sens. 221, 1–19. https://doi.org/10.1016/j. 
isprsjprs.2025.01.034.

Zhou, Y., Weng, Q., 2024. Building up a data engine for global urban mapping. Remote 
Sens. Environ. 311, 114242. https://doi.org/10.1016/j.rse.2024.114242.

Zhou, Q., Tollerud, H., Barber, C., Smith, K., Zelenak, D., 2020. Training data selection 
for annual land cover classification for the land change monitoring, assessment, and 
projection (LCMAP) initiative. Remote Sens 12, 699. https://doi.org/10.3390/ 
rs12040699.

Zhu, Z., Gallant, A.L., Woodcock, C.E., Pengra, B., Olofsson, P., Loveland, T.R., Jin, S., 
Dahal, D., Yang, L., Auch, R.F., 2016. Optimizing selection of training and auxiliary 
data for operational land cover classification for the LCMAP initiative. ISPRS J. 
Photogramm. Remote Sens. 122, 206–221. https://doi.org/10.1016/j. 
isprsjprs.2016.11.004.

Zhu, W., Braun, B., Chiang, L.H., Romagnoli, J.A., 2021. Investigation of transfer 
learning for image classification and impact on training sample size. Chemom. Intell. 
Lab. Syst. 211, 104269. https://doi.org/10.1016/j.chemolab.2021.104269.

R. Lu et al.                                                                                                                                                                                                                                       Remote Sensing of Environment 331 (2025) 115034 

17 

https://doi.org/10.1016/j.rse.2018.12.016
https://doi.org/10.1016/j.rse.2018.12.016
https://doi.org/10.1016/j.rse.2014.02.015
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1016/j.isprsjprs.2023.08.001
https://doi.org/10.1016/j.isprsjprs.2023.08.001
https://doi.org/10.1109/TGRS.2022.3141996
https://doi.org/10.1109/TGRS.2022.3141996
https://doi.org/10.1016/j.rse.2019.111253
https://doi.org/10.1016/j.rse.2019.111253
https://doi.org/10.1109/MGRS.2021.3136100
https://doi.org/10.1016/0167-8655(92)90097-J
https://doi.org/10.1016/0167-8655(92)90097-J
https://doi.org/10.1016/j.jag.2022.103146
https://doi.org/10.1186/s12859-023-05156-9
https://doi.org/10.1186/s12859-023-05156-9
https://doi.org/10.3390/rs13030368
https://doi.org/10.3390/rs13030368
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.rse.2011.06.007
https://doi.org/10.1016/j.rse.2021.112806
https://doi.org/10.1016/j.rse.2019.111322
https://doi.org/10.1016/j.rse.2019.111322
https://doi.org/10.1016/j.isprsjprs.2013.02.009
https://doi.org/10.1016/j.rse.2021.112603
https://doi.org/10.1016/j.rse.2021.112603
https://doi.org/10.1016/j.rse.2005.08.011
https://doi.org/10.1016/j.rse.2005.08.011
https://doi.org/10.1016/j.rse.2020.111741
https://doi.org/10.1016/j.rse.2023.113452
https://doi.org/10.1016/j.rse.2024.114344
https://doi.org/10.5194/essd-13-3907-2021
https://doi.org/10.5194/essd-13-3907-2021
https://doi.org/10.1016/j.neucom.2018.03.037
https://doi.org/10.1016/j.neucom.2018.03.037
https://doi.org/10.1016/j.rse.2020.111716
https://doi.org/10.1016/j.rse.2020.111716
https://doi.org/10.1016/j.eswa.2020.114417
https://doi.org/10.1016/j.eswa.2020.114417
https://doi.org/10.1016/j.rse.2018.11.014
https://doi.org/10.1016/j.rse.2023.113801
https://doi.org/10.5194/essd-16-1353-2024
https://doi.org/10.1063/1.4992835
https://doi.org/10.1016/j.jag.2024.104222
https://doi.org/10.1016/j.jag.2024.104222
https://doi.org/10.1016/j.isprsjprs.2025.01.034
https://doi.org/10.1016/j.isprsjprs.2025.01.034
https://doi.org/10.1016/j.rse.2024.114242
https://doi.org/10.3390/rs12040699
https://doi.org/10.3390/rs12040699
https://doi.org/10.1016/j.isprsjprs.2016.11.004
https://doi.org/10.1016/j.isprsjprs.2016.11.004
https://doi.org/10.1016/j.chemolab.2021.104269

	Strategic sampling for training a semantic segmentation model in operational mapping: Case studies on cropland parcel extra ...
	1 Introduction
	2 Datasets and study sites
	2.1 Meta-analysis data collection
	2.2 Case study sites and data
	2.2.1 Study sites
	2.2.2 Satellite images
	2.2.3 Labeled patch dataset
	2.2.4 Land cover data


	3 Methods
	3.1 Meta-analysis methodology
	3.2 Case study design
	3.2.1 Deep learning model
	3.2.2 Performance evaluation
	3.2.3 Experiment setup
	3.2.3.1 Training size
	3.2.3.2 Sample distribution
	3.2.3.3 Transferring methods



	4 Results
	4.1 Meta-analysis results
	4.2 Case study results
	4.2.1 Training size and sample distribution
	4.2.2 Transferring methods
	4.2.3 Implications of training sample size for parcel products
	4.2.4 Summary


	5 Discussion
	5.1 Training size
	5.2 Sample distribution
	5.3 Transferring method
	5.4 Generalizability

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Appendix A Supplementary data
	Data availability
	References


