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ARTICLE INFO ABSTRACT

Edited by Jing M. Chen Nighttime light pollution has become an increasingly serious issue in rapidly urbanizing megacities. It not only
disrupts circadian rhythms and affects mental health, but also leads to energy waste and undermines the stability

Keywords: of urban and surrounding ecosystems, posing a significant threat to sustainable development. This study eval-

SDGSAT-1 GLI
Megacities
Nighttime light pollution

uated nighttime light pollution in the residential gathering areas of two typical megacities in China (Beijing and
Shanghai) using 40-m SDGSAT-1 glimmer imagery (reflecting actual supply) and population grids (reflecting

. . human demand) refined by the high-performance Random Forest model (with R? values of 0.93 for Beijing and
Population downscaling X X N R N ] N
Mismatch index 0.81 for Shanghai). By integrating urban functional zoning data to supplement the demand for nighttime
Refined urban planning lighting, a Nighttime Light Supply-Demand Mismatch Index (NLSDMI) was developed to quantify the imbalance
Sustainable Development Goals of nighttime light between supply side and demand side. The results showed that Shanghai’s nighttime light
pollution area covered 78.25 km? (15.10 %), a higher proportion than Beijing’s 115.61 km? (11.29 %) of the
study area. Shanghai also exhibited higher peak NLSDMI values. In both cities, residential zones were among the
primary contributors to nighttime light pollution. Additionally, in Beijing, the largest share was distributed in
parks and green spaces, while in Shanghai, the second major distribution was found in industrial zones. The
spatial patterns of nighttime light pollution reflected the distinct characteristics of the two megacities: Beijing
focuses on cultural and administrative functions, while Shanghai tends to play its role as an economic hub.
Accordingly, feasible countermeasures, including targeted lighting strategy formulation, urban land-use planning
refinement and energy-saving lighting technology innovation, were proposed to mitigate light pollution and
promote urban sustainability. This study demonstrated the promising potential of SDGSAT-1 glimmer imagery in
advancing light pollution assessment and urban management. It also provides practical pathways toward the
achievement of multiple Sustainable Development Goals (SDGs), especially SDG 3 (Good Health and Well-being),
SDG 7 (Affordable and Clean Energy), and SDG 11 (Sustainable Cities and Communities). Future research should
focus on enhancing data accuracy, improving validation methods, and exploring the applicability of findings to
cities with diverse types and scales, thus providing broader theoretical support and practical guidance for global
nighttime light pollution management.
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1. Introduction

With the rapid urbanization, human economic and cultural activities
have become increasingly frequent, and the urban populations have
continued to grow. The widespread application of nighttime lighting has
invigorated socio-economic development and greatly facilitated pro-
duction and daily life. However, the intensity of nighttime lighting has
risen sharply in recent years, with its spread becoming unplanned and
surpassing actual needs (Huang et al., 2021; Niu et al., 2021; Stone,
2018). This uncontrolled trend has led to severe light pollution, which
poses profound challenges to human health, energy efficiency, and
ecological sustainability. The escalating severity of this issue makes it an
urgent topic that needs attention and resolution. To tackle the series of
global challenges confronting human society in the 21st century, the
United Nations (UN) set forth 17 Sustainable Development Goals (SDGs)
(UN, 2015). Many of them align with the challenges posed by light
pollution, emphasizing the importance of implementing effective mea-
sures. Among them, SDG 7 (Affordable and Clean Energy) advocates for
improving energy efficiency. However, disorderly nighttime lighting not
only results in significant electricity waste but also increases carbon
emissions, thereby hindering sustainable energy development (Gaston
and Miguel, 2022). Additionally, SDG 3 (Good Health and Well-being)
aims to ensure healthy lifestyles and promote the physical and mental
health of all individuals. Urban nighttime light pollution has been shown
to disrupt the human circadian rhythm, lead to sleep disorders and
cardiovascular diseases, and even impair mental health (Levin et al.,
2020). Moreover, SDG 11 (Sustainable Cities and Communities) em-
phasizes the importance of maintaining prosperity and resource balance
during urban development, while striving to build sustainable commu-
nities. However, excessive nighttime lighting can disturb urban and
surrounding ecosystems, diminishing the quality of life and the aesthetic
experience of nighttime landscapes (Lis et al., 2024). Therefore, con-
ducting in-depth research on urban nighttime light pollution, depicting
its spatial characteristics, and proposing practical solutions can help to
minimize unnecessary energy waste and health losses while meeting the
human rational needs of production and daily life, and eventually ach-
ieve sustainable urban development (Barua et al., 2024; Tavares et al.,
2021; Zielinska-Dabkowska and Bobkowska, 2022).

Satellite remote sensing technology, with its advantages of broad
coverage, real-time monitoring, and high timeliness, has provided
valuable spatiotemporal data for urban-related studies (Zhu et al.,
2019). Unlike traditional daytime remote sensing products, nighttime
satellite images provide a large-scale indication of Earth’s illumination
intensity, showing the potential to better assess light pollution (Bagheri
et al., 2023; Ye et al., 2024). Especially for accurate urban monitoring,
the demand for higher-precision nighttime light (NTL) data is becoming
increasingly urgent. Historically, commonly used NTL data include
DMSP-OLS and NPP-VIIRS. However, DMSP-OLS suffers from low
spatiotemporal resolution, data saturation, and pixel blooming, all of
which significantly degrade data quality and limit its applicability
(Davies and Smyth, 2018). Although NPP-VIIRS data offers improved
spatial resolution compared to DMSP-OLS, its resolution remains
insufficient to meet the requirements for detailed urban monitoring. The
Sustainable Development Science Satellite 1 (SDGSAT-1), launched in
2021, holds promise to address the limitations of existing NTL data and
introduce new scientific advancements. As the first global scientific
satellite dedicated to supporting the UN 2030 Agenda for Sustainable
Development (2030 Agenda), it is equipped with three advanced sen-
sors: a Thermal Infrared Spectrometer, a Glimmer Imager, and a Mul-
tispectral Imager, each designed to meet the scientific research needs of
SDGs (Guo et al., 2022). Among them, the glimmer (GLI) imagery fea-
tures an innovative design employing color bands and a panchromatic
band. The spatial resolution of the color bands is 40 m, and that of the
panchromatic band is 10 m. Compared to other NTL data, its high res-
olution and multiple bands provide the most precise range, intensity,
and type of illumination ever collected, allowing for detailed
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characterization of human activity patterns. Currently, scholars have
conducted extensive SDGSAT-1 GLI-based studies. Li et al., 2023a
developed a dynamic village-scale demarcation method for built-up
areas using SDGSAT-1 GLI data, providing a new perspective for fine
feature extraction. Wu et al. (2024) proposed a method for extracting
urban road networks from SDGSAT-1 GLI and validated it in multiple
cities with complex road distributions. Liu et al. (2024b) proposed a
novel index by integrating NTL intensity information from SDGSAT-1
GLI data and building volume information from Digital Surface Model
(DSM) data to extract built-up areas more accurately. These research
cases demonstrate the significant potential of SDGSAT-1 GLI data in
urban-related studies.

Light pollution is intrinsically linked to human activities (Walker
etal., 2020), making population data an integral part of the study. Given
the relatively focused study area and the need to match NTL images,
high-resolution population gridded data is essential for detailed spatial
analyses. Traditional population data is typically derived from census,
while numerous studies have transformed them into gridded formats,
resulting in several well-known open datasets. For example, the Gridded
Population of the World (GPW) (Tobler et al., 1997) provides global
population maps through efficient simple computational methods but
cannot capture details. Datasets such as LandScan (Dobson et al., 2000),
Global Rural-Urban Mapping Project (GRUMP) (Balk et al., 2006), and
WorldPop (Tatem, 2017) utilize data-intensive dasymetric mapping
approaches, leveraging fine-scale spatial auxiliary data as inputs for
modeling to capture population heterogeneity. However, in high-
density urban areas, the allocation accuracy still faces challenges (Xu
et al., 2024). In this context, studies have emerged that use auxiliary
data to downscale existing datasets. Ye et al. (2019) utilized a Random
Forest (RF) model, integrating remote sensing images and points of in-
terest (POI), to downscale county-level census data into 100 x 100 m,
revealing a population map with higher accuracy than the WorldPop.
Leveraging SDGSAT-1, Liu et al., 2023a refined the WorldPop popula-
tion distribution to a 10-m resolution. Lei et al. (2024) applied a multi-
scale geographically weighted regression model incorporating building
footprints, NTL and POI to allocate county-level population to 100-m
raster.

Due to the unordered sprawl of nighttime lighting caused by the
accelerated urbanization, there has been an increasing number of
studies on adopting NTL imagery to monitor and evaluate the nighttime
lighting environment. Kuechly et al. (2012) explored the relationship
between NTL intensity and land use, revealing that road-related upward
light sources accounted for 31.6 % of the sources of light pollution. Tang
et al. (Tang et al., 2020) combined night view photos of Changsha with
POI data to analyze the spatial patterns of lighting in the urban area,
identifying that commercial aggregation was the dominant source of
light pollution. These studies focus on the sources of light pollution
across different functional areas but have not explored the differences in
how functional zones contribute to the generation and distribution of
light pollution. Ye et al. (2020) integrated NPP-VIIRS data with popu-
lation density to evaluate the balance between supply and demand for
NTL from a human-centered perspective. Zhao et al. (2021) utilized NTL
images and POI data to assess light pollution by examining its impact on
urban residential environments. These studies have addressed the
impact of nighttime lighting on human well-being. However, these
existing studies have not comprehensively and finely revealed the
spatial heterogeneity of the distribution and level of light pollution from
the perspective of light supply and demand, thereby supporting
increasingly sophisticated urban planning and lighting management.

Given the above background, this study focused on typical mega-
cities in China, which is characterized by high economic prosperity and
population density (The State Council of China, 2014), as case study
areas. By utilizing high-resolution data exemplified by SDGSAT-1 GLI
imagery and incorporating multi-source auxiliary data such as urban
functional zones, the research aimed to quantifying the mismatch be-
tween supply and demand of urban nighttime lighting. Overall, this
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study developed a Nighttime Light Supply-Demand Mismatch Index
(NLSDMI) to identify zones and evaluate levels of nighttime light
pollution. Specifically, the phased targets were: (1) to obtain high-
quality SDGSAT-1 NTL imagery; (2) to generate reliable 40-m popula-
tion grids; and (3) to construct NLSDMI to analyze the spatial supply-
demand relationship of NTL, and propose recommendations to boost
SDGs such as SDG 3, 7, and 13.

In response to the current research gap, the main contributions of
this study include:

(1) Detailed characterization of NTL supply patterns based on
new satellite imagery: Leveraging high resolution SDGSAT-1
GLI data to comprehensively depict actual NTL supply patterns
at a 40-m fine scale;

(2) Refined exploration of NTL demand patterns with Al-driven
model and multi-source data: Utilizing 40-m resolution popu-
lation grid data via RF-based downscale and urban functional
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zoning data to analyze NTL demand of residential gathering area
in megacities, revealing the spatial distribution of actual regional
lighting needs;

(3) Developed a refined remote-sensing index for assessing
urban nighttime light pollution: Constructing a spatially
refined index to evaluate the imbalance between NTL supply and
demand, providing scientific supports for light pollution man-
agement and optimizing urban lighting environments.

The rest of this paper is structured as follows: Section 2 introduces
the study areas and data; Section 3 describes the methodology; Section 4
analyzes the results of nighttime light pollution assessment; Section 5
discusses the findings; and Section 6 summarizes the conclusions.
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Fig. 1. Study areas and corresponding SDGSAT-1 GLI RGB imagery.
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2. Study area and data
2.1. Study area

This study focused on the residential gathering areas of Beijing and
Shanghai in China (Fig. 1). These two cities were selected because they
are the most representative megacities in mainland China, characterized
by high levels of urbanization and vibrant economic activities, ranking
among the top global megacities. According to Globalization & World
Cities (GaWC), Beijing and Shanghai have been classified as Alpha+
cities since 2008 and have maintained this status (https://gawc.lboro.
ac.uk/gawc-worlds/the-world-according-to-gawc/). They are also the
only two megacities in mainland China at this level. In addition, the
Global Cities Index (GCI) rankings show that Beijing has consistently
ranked in the top ten over the past five years, while Shanghai has
remained in the top twenty (https://www.kearney.cn/article/-/insight
s/303836250). As the capital city located in the northern part of the
North China Plain, Beijing serves as China’s political and cultural hub,
with a GDP of 4.98 trillion CNY and a population of 21 million in 2024
(https://tjj.beijing.gov.cn/tjsj_31433/tjgb_31445/ndgb_31446,20
2503/t20250319 4038820.html). Positioned at the Yangtze River es-
tuary, Shanghai is regarded as the most significant economic, financial
and shipping center of China, with a GDP of 5.39 trillion CNY and a
population of 25 million in 2024 (https://tjj.sh.gov.cn/tjgb/2025032
4/a7fel8c6d5c24d66bfca89c5bb4cdcefb.html).

As representative examples of urbanization in China, the two cities
have witnessed a significant rise in NTL intensity and a rapid expansion
in NTL range over recent years, exacerbating nighttime light pollution.
This emerging issue negatively impacts life quality of residents and
significantly impedes energy efficiency and urban sustainability. Resi-
dential gathering area with the highest population density and urbani-
zation levels, usually serves as a key pivot for commerce, culture and
transportation, playing a core role in supporting urban development.
Therefore, selecting the residential gathering area of these two mega-
cities as representative cases provides valuable insights into the typical
characteristics of urban nighttime light pollution and responding stra-
tegies for its mitigation.

In this study, the residential gathering area of Beijing is defined ac-
cording to the “Beijing City Master Plan (2016-2035)”, covering 1387
km? and including the districts of Dongcheng, Xicheng, Haidian, Feng-
tai, Chaoyang, and Shijingshan. And the residential gathering area of
Shanghai is defined within the outer ring road based on the outer ring
expressway from OpenStreetMap road data (Ta et al., 2020; Yue et al.,
2021), which covers 662 km?, including the districts of Huangpu,
Hongkou, Jing’an, and parts of Pudong New District, Minhang District,
Baoshan District, and Jiading District.

2.2. Data and preprocessing

2.2.1. SDGSAT-1 GLI imagery

The SDGSAT-1 GLI data used in this study comes from SDGSAT-1
developed and operated by International Research Center of Big Data
for Sustainable Development Goals (CBAS). Through the SDGSAT-1
Open Science Program initiated by CBAS, researchers around the
world can download SDGSAT-1 data by submitting research proposals
online (https://www.sdgsat.ac.cn/). The satellite operates at an orbital
altitude of approximately 505 km with a swath width of 300 km. The
NTL images obtained by the Glimmer Imager on board SDGSAT-1
contain four bands: a panchromatic band with a spatial resolution of
10 m and the RGB bands with a spatial resolution of 40 m. From the
perspective of data quality, the SDGSAT-1 GLI images adopted in this
study are from the RGB bands rather than the panchromatic band.
Although the panchromatic images have higher spatial resolution, they
have more obvious stripes and salt-and-pepper noise, requiring more
complex preprocessing (currently there is no mature method system); on
the contrary, RGB data has less noise and richer information, and is more
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suitable for direct applications in large-scale light pollution modeling
(Wang et al., 2024).

In order to obtain higher-quality images initially and reduce the
complexity of preprocessing, weather forecasts and flight schedules of
Beijing Capital International Airport and Shanghai Hongqiao Interna-
tional Airport were referred to, and clear days with no clouds or minor
clouds were selected for image acquisition. The specific acquired dates
and product IDs of screened SDGSAT-1 GLI data are shown in the
Table 1.

To ensure the usability and accuracy of the SDGSAT-1 GLI data, this
study conducted necessary preprocessing, which involved three steps:

(1) Potential noise removal: The SDGSAT-1 RGB GLI imagery
consists of three bands, where each band reflects light informa-
tion in a standard RGB image. Visual inspection and statistical
analysis of pixel values showed that noise points exhibit
abnormal patterns across the bands. Specifically, noise pixels
display the minimum value in at least one band, while other
bands show values greater than the minimum. Based on this
observation, potential noise points were identified as those with
minimum values in at least one band and higher-than-minimum
values in other bands. The potential noise was extracted from
each band, and noise points were removed accordingly.

Radiometric calibration: To obtain physically meaningful NTL
radiance information, the denoised data from each band were
first converted into the NTL radiance values. The calibration
parameters required for converting the SDGSAT-1 GLI data into
NTL radiance values can be found in the header file of the original
SDGSAT-1 GLI data. The file provides detailed calibration pa-
rameters for each band of the Glimmer Image for Urbanization,
with the calibration coefficients last updated on March 1, 2022.
The specific conversion formula is as follows (Liu et al., 2024a):

(2

—

L = DN x GAIN + BIAS (€D)]

Where L represents the radiance value of the SDGSAT-1 GLI image,
with units of W-m~2.sr !.um~!, DN denotes the raw digital number of
each band, GAIN and BIAS are the calibration parameters officially
provided.

Next, calculate the total radiance values for quantifying light pollu-
tion based on the light intensity contribution of the RGB three-color
bands. The grayscale brightness of SDGSAT-1 GLI imagery is calcu-
lated as follows (Grundland and Dodgson, 2007):

B = 0.2989 X Lgeq +0.5870 X Lgreen +0.1140 X Lpye (2)

Where B represents the grayscale brightness of the SDGSAT-1 GLI
data, with units of W-m_z-sr_l-pm_l, Lged, Lgreen, Lpie denote the radi-
ance values of the red, green, and blue bands, respectively.

(3) Geometric correction: After comparing with the high-resolution
standard color remote sensing imagery base map, a slight
misalignment of roads was observed. To improve data quality,
control points were used for image registration, allowing for
more accurate application of SDGSAT-1 GLI imagery.

2.2.2. Other geospatial and statistical data

The population data used in this study was sourced from the dataset
the University of Southampton shared on the WorldPop platform
(https://hub.worldpop.org/geodata/summary?id=49919). The latest
2020 WorldPop population data with a 100-m resolution was down-
loaded for analysis. The dataset consists of six types, and this study
focused on the data that has been adjusted to align with the national
population totals reported by the UN. Estimates were made only for
areas mapped as containing built-up settlements. The population data
for each district was adjusted based on the permanent resident popu-
lation figures from the “2021 Statistical Yearbook” and then resampled
from the original 100-m resolution to a 40-m resolution.
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Table 1
SDGSAT-1 GLI data.
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Product ID

Municipality Acquired Date
Beijing, China 2022-01-03
Shanghai, China 2022-04-10

KX10_GIU_20220103_E116.94 N39.61_202200111720_L4A
KX10_GIU_20220410_E119.90_N31.84_202200092994 L4A

POIs are geographical points that represent important locations for
human activities. Integrating POI data with multi-source remote sensing
data can significantly enhance the accuracy of population distribution
mapping (Guo et al., 2023b). The POI data used in this study were
sourced from Amap, and six types of POI records closely related to the
population in 2020 and 2022 were selected, including food, shopping,
transportation facilities, residential areas, life services, and recreation.
Since the spatial distribution of each POI category differs, the six POI
data types were processed separately. The residential POI category
directly reflected population distribution, and thus, the point-to-raster
method was employed to convert POI data into raster grids. The
remaining five categories, service-oriented POIs, had a diminishing
spatial influence with distance, so the euclidean distance was calculated
to assess their spatial impact (Li et al., 2023b). This results in six cor-
responding spatial variables, each with a resolution of 40 m.

The road density data was derived from OpenStreetMap (www.ope
nstreetmap.org). Road density was calculated at a spatial resolution of
40 m using the line density tool in ArcGIS.

The building density data was derived from building footprint and
height data for 77 cities nationwide in 2019, obtained from Baidu Map.
Since building footprints and heights were unlikely to change signifi-
cantly over time, this dataset was used as a reference. The calculation
method is as follows: a 40 x 40 m fishnet was created for the study area,
and the proportion of each grid cell covered by buildings was calculated.
The grid data was then converted into GeoTIFF format, yielding building
density with a spatial resolution of 40 m.

The Normalized Difference Vegetation Index (NDVI), Normalized
Difference Built-up Index (NDBI), and Normalized Difference Water
Index (NDWI) for 2020 and 2022 were derived from Landsat 8 satellite
imagery available on Google Earth Engine (GEE). The satellite launched
in 2013 has a spatial resolution of 30 m. The data used in this study was
identified by the ID LANDSAT/LC08/C02/T1_L2. These three auxiliary
variables were resampled to a spatial resolution of 40 m.

Digital Elevation Model (DEM) data comes from the Copernicus
Digital Elevation Model (COP-DEM), a global 30-m resolution dataset
released by the European Space Agency (ESA). This data was then
resampled to 40 m to align with the data scale.

The urban functional zoning data was derived from the 2018 dataset
of land use types in Chinese cities (Gong et al., 2020), which includes 5
main categories and 12 subcategories. This dataset was created using 10-
m satellite imagery from Sentinel-2 A/B in 2018, OpenStreetMap, NTL
data (Luojia-1), POI data from Amap (including categories and quanti-
ties), and Tencent social location data as input features. In this study, the
data was validated and corrected using the updated POI data, resulting
in the revised urban functional zoning data.

A summary introduction of all data used in this study are listed in
Table 2.

3. Methods

The overall methodological framework applied in this study is shown
in Fig. 2. The first component corresponds to Section 2.2 (Data and
Preprocessing), which describes the preprocessing of SDGSAT-1 GLI
data and other auxiliary datasets. The subsequent two components
constitute the core of this framework. The second component corre-
sponds to Section 3.1 (Population downscaling estimation), where the
procedures for deriving estimated high-resolution population raster
datasets based on the RF model are elaborated. The third component
corresponds to Section 3.2 (Nighttime light pollution assessment),

Table 2
Data list.
Data Name Description Source Purpose
International

SDGSAT-1 GLI RGB
band images (40-m

Research Center of
Big Data for

Measuring the

SDGSAT-1 GLI
actual supply

magery resolution) Sustainable of NTL
Development Goals
Constrained
M ing th
WorldPop Individual countries . easuring the
. . Online database actual demand
population 2020 UN adjusted
R for NTL
(100-m resolution)
Road density raster
. calculated using Line
Road density Density tool based on OpenStreetMap
OSM road network
Building density
raster calculated
Building using the Point .
B M
density Density tool based on aidu Map
building footprint
data
NDBI The remote-sensin Landsat 8 satellite
NDVI . 8 from United States WorldPop
index calculated on Geological Survey population
NDWI the GEE platform (available on GEE) raster
The global 30-m downscaling
Copernicus Digital European Space
DEM .
Elevation Model Agency
(COP-DEM)
POI_food
POIL shop POI raster calculated
POI_transport using the Euclidean
POl _recreation Distance tool Ama
POL service P
POI raster produced
POL_ residential using the Point-to-
Raster tool
Statistical data of
permanent
population in each
. district in 2022 from Adjusting
Demographic .. Government open .
the Statistical population
data data .
Yearbook of the estimation

corresponding
municipalities
published in 2023
Verified and
Urban corrected urban
functional functional zoning
zoning data data based on
updated POI data

Measuring the
actual demand
for NTL

Existing studies

detailing the construction of the NLSDMI. After completing the above
analysis process, this study proposed policy recommendations based on
the research results obtained, which were discussed in Section 5.4.

3.1. Population downscaling estimation

The study area consisted of the residential gathering areas of two
typical megacities, where there are dense artificial light sources,
showing the characteristics of high dynamic range and complex color
temperature (Yang et al., 2021). To accurately capture internal diversity
of nighttime lighting and match SDGSAT-1 NTL data, higher-resolution
population data is necessary to support refined analysis. However, the
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Fig. 2. Overall methodological framework.

population grid data currently in common use mainly come from
WorldPop and LandScan. The former has a spatial resolution of 100 m
but is currently only updated to 2020, while the latter meets the time
validity of year 2022 but has a spatial resolution of only 1 km. Therefore,
it is necessary to adjust the existing population grid to achieve time-
effective and spatial-detailed research.

To achieve this, this study employed RF regression model for popu-
lation downscaling estimation, following these three steps:

(1) Model Construction: A nonlinear regression relationship was
established based on the corrected 2020 WorldPop population
grid at 40 m resolution, combined with other 15 spatial auxiliary
variables with the same resolution, to develop a parameter-
optimal RF model;

Estimation of Population Data: The trained RF model was
applied to 2022 auxiliary variables at 40 m resolution to estimate
the population distribution for 2022;

Regional Adjustment: The estimated population data was
further refined using official demographic data to improve
accuracy.

(2)

@3

~

3.1.1. Principle of RF regression model

This study employed the RF model for regression tasks. RF was an
ensemble machine learning algorithm based on decision trees, first
proposed by Breiman (2001). It enhanced the robustness and accuracy of
predictions by constructing multiple decision trees and aggregating their
outputs through methods such as averaging or majority voting. The
main processing steps were as follows: (1) Randomly sampling multiple
training set from the sample data using the bootstrap method; (2)
Constructing independent decision trees for each training set; (3)
Randomly selecting a subset of features at each split node to determine
the best split; (4) Aggregating the predictions of all decision trees to
produce the final output. This structure provided RF with several
notable advantages, such as high prediction accuracy, robustness to
outliers, and effective prevention of overfitting. RF could be applied to
classification task or regression task and effectively model nonlinear
relationships between the dependent variable and multiple independent
variables. It had been successfully utilized in downscaling studies and
exhibited overall robust performance (Yang et al., 2020; Zhang et al.,
2022).
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3.1.2. Construction of auxiliary variable database

This study employed the 2020 population gridded data with a 40-m
resolution after resampled from the 100-m WorldPop raster and cali-
brated it using demographic data from statistical yearbooks, as one of
the key dependent variables for population downscaling estimation. The
purpose of this correction is to reduce the resampling bias of the original
WorldPop data in characterizing the population distribution at smaller
spatial scales, thereby providing more reliable support for subsequent
modeling.

In selecting other auxiliary variables, this study focused on acquiring
all possible spatial information closely related to population distribu-
tion. Furthermore, the feature importance evaluation in the RF model
was utilized to identify key auxiliary variables and improve the effi-
ciency and interpretability of the model. Specifically, this process
involved testing different combinations of variables and conducts
repeated training to evaluate the contribution of each variable to the
model performance, then assess its explanatory power for the spatial
distribution of the population. After eliminating redundant or irrelevant
variables with small contributions through the above feature engineer-
ing process, this study screened out 15 key variables as auxiliary factors
for population downscaling estimation. The auxiliary variables include:
(1) Satellite optical bands: SDGSAT-1 GLI Red Band, Green Band, and
Blue Band; (2) Urban built environment factors: Road density, Building
density, and DEM,; (3) Remote sensing indices: NDBI, NDVI, and NDWI;
(4) POI-drived factors: POI food, POI_shop, POI transport, POIr-
esidential, POl service, and POI recreation. The visualized groupings of
the variables were presented in the supplementary material (Fig. S1 and
Fig. S2).

3.1.3. Execution of RF regression model
This study employed MATLAB (Version: R2024a) to build parameter-
optimal RF regression models. The specific steps are outlined as follows:

(1) Data standardization: All 40-m raster data were standardized to
the World Geodetic System 1984 geographic coordinate system,
ensuring consistent dimensions and grid alignment. And the
dependent and independent variables in 2020 were imported into
MATLAB.

(2) Model training and prediction: Then the regression relation-
ship between the 40-m population data and other auxiliary var-
iables in 2020 was modeled using the RF. The optimal parameters
of the model were determined through iterative optimization
using grid search and 5-fold cross-validation. Expressly, the
number of decision trees was set to 50-1000, the maximum depth
of a single tree is set to 0-20, the minimum number of samples
required for node splitting was set to 2-20, and the minimum
number of samples in each leaf node was set to 1-10 to enhance
the stability and predictive accuracy of the model. In addition,
the split ratios of the training set and validation set were 70 %
and 30 % respectively. Out-of-bag (OOB) prediction was enabled
to evaluate model performance, eliminating the need for a
separate test dataset.

(3) Feature importance analysis: After model training, feature
importance was then calculated based on the OOB data to assess
the contribution of each auxiliary variable to the target depen-
dent variable. Based on the variable ranking, significantly
redundant variables were eliminated, and steps (1)-(3) were
repeated until the model performance reached the optimal level.

(4) Model accuracy evaluation: The optimal model was applied to
obtain the fitted values of the 40-m resolution population data in
2020 and then compared with the actual values. The performance
of the model was reflected by the Coefficient of Determination
(RZ) (Hutengs and Vohland, 2016), Root Mean Square Error
(RMSE), Mean Absolute Error (MAE) (Hodson, 2022), and Mean
Squared Logarithmic Error (MSLE) calculated (Abdelrahim and
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Yiicel, 2025). The formulas for these evaluation metrics are as

follows:
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Where y; represents the actual value, y; represents the predicted
value, and y represents the mean of the actual values. i denotes the i-th
spatial pixel, n is the total number of spatial pixels.

3.1.4. 40-m population girds estimation

This study assumed that the regression relationship for the same
regional data can be transferred and remain generally consistent be-
tween similar years, which has been supported by several studies
(Knibbe et al., 2014; Masselot et al., 2018; Wu et al., 2025). Specifically,
the relationship between the population raster and auxiliary variables in
2020 captured by RF was applied to estimate population raster in 2022.
As such, the model parameters trained on 2020 data were also applied to
the 2022 auxiliary variables.

To ensure that the estimated population data is more accurate and
aligns with reality, this study conducted a district-level adjustment of
the RF-estimated population based on the 2022 resident population
figures for each district from the 2023 Statistical Yearbook of each
megacity. The specific correction formula is as follows:

P.
Acorrecwd.i.j = Aij x 27:4 (7)
ij

Where A; represents the population number on the j-th grid cell of
the i-th district after downscaling; P; represents the resident population
of the i-th district (from the statistical yearbook); Zin,- represents the
total downscaled population for all grid cells in the i-th district, used to
calculate the correction ratio; Acorecedij r€presents the corrected popu-
lation for the j-th grid cell in the i-th district.

3.2. Nighttime light pollution assessment

From the dual perspectives of supply and demand, the mismatch
between nighttime lighting and human activities was quantified by
establishing a gridded index NLSDMI. Then the areas affected by light
pollution was indenfied where NTL exceeded actual human demand.
Specifically, areas where NLSDMI greater than a certain threshold were
classified as light-polluted, while areas where NLSDMI less than or equal
to the threshold were classified as non-polluted (the threshold was
dynamically determined based on the distribution of NLSDMI in
different regions). In the identified light pollution areas, the higher the
NLSDMI, the higher the mismatch degree and the more prominent the
pollution problem.

3.2.1. Supply-side NTL intensity quantification

The supply-side NTL intensity was simply represented by actual
lighting intensity derived from SDGSAT-1 GLI images. The radiance
values of the three bands (RGB) were synthesized and converted into
grayscale brightness values according to Section 2.2.1. These brightness
values were then normalized using min-max normalization, as shown in
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Eq. (8).
_ B — Bmin
Srwrmal = Boax — Boin (8)

Where S.oma represents the normalized actual NTL intensity, B
represents the grayscale brightness derived from the RGB data as
calculated before, measured in W-m™2.sr L.pm 1.

3.2.2. Demand-side NTL intensity quantification

The demand-side NTL intensity primarily reflects human rational
demand for nighttime illumination. Since the residential gathering areas
of megacities often consist of multiple functional zones, the demand for
NTL varies across different zones and cannot be directly represented by
population density alone. Therefore, this study introduced a functional
zone type-specific demand weight system to quantify the differences in
NTL demand.

Hence, the demand weights were determined by both urban func-
tional zoning and actual lighting intensity. Since the original urban
functional zoning data collected excluded road areas, roads were not
considered in demand weight determination. The specific steps for
calculating the weight were as follows: (1) The Zonal Statistics as
Table tool in ArcGIS was used to calculate the number of grid cells and
the total grayscale brightness value for each of the 11 secondary func-
tional categories (Residential, Business office, Commercial service, In-
dustrial, Transportation stations, Airport facilities, Administrative,
Educational, Medical, Sports and cultural, Park and green space); (2)
The raster data used in this study had a resolution of 40 m, meaning that
each grid cell covered an area of 1600 m?. Based on this, the total area of
each functional zone was calculated; (3) The total grayscale brightness
value of each functional zone was then divided by its total area to obtain
the unit-area NTL intensity, which was taken as the demand weight for
each functional zone as shown in Eq. (9).

n;
2By
i

w; 9

n;
> Ay
=1

Where W; represents the weight of the i-th urban functional zone, By
represents the grayscale brightness of the j-th grid cell in the i-th urban
functional zone, A; represents the area of the j-th grid cell in the i-th
urban functional zone. n; represents the total number of grid cells in the
i-th urban functional zone. The demand weights for each functional zone
in the two megacities calculated are shown in Table 3.

The demand-side NTL intensity was calculated as the product of
population and demand weight, as shown in Eq. (10). The demand-side
NTL intensity was normalized using min-max normalization, as shown
in Eq. (11).

D; =P xW,; (10)
Table 3
NTL demand weights of Beijing and Shanghai.
Zonal Function Beijing Shanghai
Industrial 0.07 0.09
Park and green space 0.06 0.10
Airport facilities 0.06 0.07
Transportation stations 0.18 0.19
Educational 0.11 0.12
Residential 0.11 0.11
Business office 0.29 0.29
Commercial service 0.12 0.23
Sport and cultural 0.16 0.23
Administrative 0.14 0.11
Medical 0.15 0.14
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Dj - Dmin
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Dmax - Dmin

Drorma =

Where D; represents the demand intensity of the j-th grid cell, P;
represents the number of individuals in the j-th grid cell, W; represents
the weight of the i-th urban functional zone, D,,mq represents the
normalized demand light intensity.

3.2.3. NLSDMI establishment and light pollution area identification

Finally, the normalized supply-side NTL intensity was divided by the
normalized demand-side NTL intensity to obtain NLSDMI, as shown in
Eq. (12).

NLSDMI = Sromat (12)
Dnormal

Where S,orma represents the normalized actual NTL intensity, Dyormar
represents the normalized demand NTL intensity, and NLSDMI repre-
sents the nighttime light supply-demand mismatch index. Visual repre-
sentations of the data used in constructing the index were included in
the supplementary material (Fig. S3 and Fig. S4). Furthermore, the
derived NLSDWI was spatially analyzed using Global and Local Moran’s
I to intuitively reveal its distribution pattern.

The NLSDWI developed in this study is a continuous spatial metric
designed to quantify the degree of mismatch between NTL and actual
human demand, which are positively associated with the risk of light
pollution. According to a widely accepted definition, “Light pollution is
the presence of any unwanted, inappropriate, or excessive artificial
lighting” (Smith et al., 2023). Therefore, it is necessary to quantitatively
determine the extent of affected areas to provide scientific references for
light pollution management. In this study, thresholds were set as the
mean plus one standard deviation of the log-transformed NLSDMI
values. Areas with NLSDMI exceeding this threshold were classified as
light-polluted, while areas with values less than or equal to the threshold
were classified as non-polluted.

Specifically, the threshold determination involved three steps: (1)
The original NLSDMI distribution was right-skewed (long right tail), so a
base-10 logarithmic transformation (log;o) was applied, resulting in an
approximately normal distribution of the transformed values. (2) Ac-
cording to the empirical rule of normal distribution, about 68 % of
values lie within the range of mean + one standard deviation. Values
exceeding the mean plus one standard deviation were considered
significantly higher than average or anomalously elevated, which served
as a robust and interpretable criterion to identify light-polluted areas.
(3) Since the threshold was determined in the log-transformed domain,
it was finally converted back to the original scale using the exponential
function.

3.2.4. Field survey

To validate the accuracy of identifying light pollution areas derived
from multi-source data in this study, field surveys were conducted in
both Beijing and Shanghai. Given the substantial investment of
manpower, material, and resources for field surveys, a representative
sampling strategy was adopted. Specifically, within various functional
zones of each city, the central points of pixel with relatively high (top 5
%) or low (bottom 5 %) NLSDMI value were randomly selected as survey
points, and their geographic coordinates (latitude and longitude) were
recorded. The subsequent point screening process comprehensively
compared long-term remote-sensing images (such as NPP-VIIRS and
high-resolution visible light images), land use maps, and urban planning
documents to ensure that the selected locations were stable in both
spatial and functional attributes.

The field surveys were carried out on clear nights with minimal cloud
cover and relatively stable air quality conditions, specifically during the
peak period of artificial lighting (20:00-22:00, UTC + 8). At each
selected location, the following investigation procedures were under-
taken: (1) the nighttime environment was documented through on-site
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photography; (2) illuminance levels (in LUX) were measured using three
TA636A digital light meters, and the average value was calculated to
ensure measurement reliability; and (3) the number of passing vehicles
and pedestrians was recorded over a standardized 5-min observation
period. These measurements were subsequently used to estimate the
local nighttime light pollution level (expressed as a relative value, i.e.,
the average illuminance measured by the three instruments divided by
the sum of the number of vehicles and pedestrians).

4. Results
4.1. Quality evaluation of SDGSAT-1 GLI imagery

4.1.1. Denoising result

In this study, potential noise was identified through visual inspection
combined with pixel-based statistical analysis. Taking the local Red
band of SDGSAT-1 GLI in Beijing as an example, the denoised result
obtained were shown in Fig. 3. It can be observed that the potential noise
identified was mainly distributed near the road network, especially in
the intersection of roads where human activities are complex and
lighting facilities are dense. This is because the dynamic light sources
represented by vehicle lights in these areas are easily captured by the

116°E 116°20'E

40°15'N

40°N
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sensor as abnormal values, and the spectral superposition of multiple
static light sources may also cause interference in the sensor’s recogni-
tion. Moreover, the denoising method proposed effectively removed
salt-and-pepper noise and saturation overflow artifacts in most urban
blocks. Image distortions were significantly reduced and clarity was
improved as rough and blurry areas were eliminated.

4.1.2. Spatial distribution analysis of SDGSAT-1 NTL intensity

The SDGSAT-1 GLI images of the residential gathering areas of the
two megacities obtained by preprocessing according to the method in
Section 2.2.1 are shown in Figs. 4 and 5. It can be observed that the NTL
was primarily concentrated in the central regions (such as the com-
mercial districts within Third Ring Road of Beijing and the Bund and
Lujiazui along both banks of the Huangpu River in Shanghai), with
relatively sparser distribution in the surrounding areas, though scattered
small-scale clusters were also present. It’s worth noting that the road
network was visible due to high spatial resolution of SDGSAT-1,
reflecting the spatial characteristics of urban transportation of these
megacities: Beijing’s transportation network presents a mixed structure
of ring, radial and chessboard shapes, while Shanghai’s road network
presents the characteristics of ring and grid. Additionally, when
considering the separate radiation values for each RGB band, it is

116°10'E

39°57'30"N

Potential noise |

Fig. 3. (a) Red band GLI image of Beijing with noise; (b) Results of potential noise identification; (c) Partial image after potential noise removal. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. NTL radiance values (W-m~2sr~'.cm™!) of SDGSAT-1 GLI images for the residential gathering area of Beijing: (a)-(d) represent the red, green, blue bands and
grayscale brightness, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

evident that the radiation in the Blue Band was lower compared to the
Red Band and Green Band, particularly near the road areas. This is
because the current nighttime artificial lighting sources Beijing and
Shanghai are mainly Light Emitting Diode (LED) that emit warm yellow
light and white light, while cool blue light has been restricted in layout
due to the need to avoid its damage to human eyes (B. Guo et al., 2023a).

4.2. Results of population downscaling estimation

4.2.1. Performance evaluation of RF models

This study employed the RF model to establish the regression rela-
tionship between population data and auxiliary variables. Model per-
formance was assessed using R, RMSE, MAE and MSLE. Table 4.
presents the accuracy evaluation results of parameter-optimal RF
models: The RF trained in the residential gathering area of Beijing
achieved an R? of 0.93, demonstrating an excellent fitting relationship.
Additionally, the RMSE and MAE were 11.11 and 7.60, respectively,
indicating minimal error between predicted and actual values.
Furthermore, the MSLE was 0.30, suggesting that the model maintained
high predictive accuracy across different population density regions
with relatively low errors. While the model trained in the residential
gathering area of Shanghai yielded an R? of 0.81, which, although
slightly lower than Beijing, still reflected a strong fitting relationship,
confirming the effectiveness of prediction in this region. The RMSE and
MAE were 36.70 and 26.06, respectively, indicating some level of error,
but the overall predicted trend remained consistent with the actual
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population distribution. Meanwhile, the MSLE was 0.46, suggesting
slightly higher errors in some low-population-density areas, but without
significantly affecting overall prediction accuracy. Overall, the RF
models developed in this study demonstrated strong predictive capa-
bility in both study areas. The RF performed with higher accuracy in
Beijing, while the Shanghai model maintained satisfactory
interpretability.

In order to intuitively demonstrate the relationship between the
predicted value and the actual value of the RF model, scatter density
diagrams were further drawn, as shown in Fig. 6. The colors in the image
represented point density, with red indicating high-density areas and
blue indicating low-density areas. Overall, the RF regression model
demonstrated favorable fitting performance in both study areas, with
data points in both figures distributed along a straight line. The model
performed better in Beijing, achieving a higher degree of agreement
between predicted and actual values. Although the Shanghai model
exhibited some deviation, it still demonstrated good applicability.
Among them, the scatter distribution in Beijing was closer to the “y = x”
line, with a regression equation slope of 0.8876 and an intercept of 5.95.
This suggested that the model’s predictions were relatively close to the
actual values, with a smaller overall error and better fitting perfor-
mance. It was also observed that data points were more densely clus-
tered within the low to medium population range (0—100), implying
higher prediction accuracy in this range. Similarly, the scatter plot for
Shanghai also exhibited an overall trend, with a regression equation
slope of 0.7186 and an intercept of 33.88, indicating that the predicted
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Table 4
Table of RF accuracy evaluation.
Evaluation index Beijing Shanghai
R? 0.93 0.81
RMSE 11.11 36.70
MAE 7.60 26.06
MSLE 0.30 0.46

values in Shanghai were generally lower than the actual values. The
error increased, and the scatter points became more dispersed, partic-
ularly in high-population-density areas (100—300). Meanwhile, high-
density points were mainly concentrated in low-population areas
(0-100), suggesting that the model maintained relatively stable pre-
diction accuracy in these regions.

In general, the results above indicate that the proposed method is
effective and can be applied to subsequently estimate the 40-m spatial
population distribution for 2022.

4.2.2. Feature importance screening of RF models

Analyzing the feature importance of auxiliary variables is crucial to
understanding the spatial distribution pattern of population and
ensuring the robustness of regression relationships. By identifying key
variables that significantly influence population distribution, the
modeling process can be further optimized, ultimately enhancing the
robustness and accuracy of estimated population. This study screened
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out key auxiliary variables by conducting feature importance analysis in
combination with OOB data, and quantified the contribution of each
variable to the model (as shown in Fig. 7).

Through experiments and a comprehensive consideration of the
training models for the two cities, the final 15 key variables for RF
training and prediction were determined based on the ranking of their
contribution, as shown in Fig. 7. The results indicate that all auxiliary
variables contribute to the model to varying degrees, validating the
rationality and effectiveness of the selected variables. However, their
contributions differ. Among these, the contribution of road density is the
highest for both Beijing and Shanghai, followed by the remote sensing
index NDBI, which measures the extent of surface building coverage.
These two auxiliary variables play a critical role in the model. Notably,
the POL residential variable has the lowest contribution and even ex-
hibits a negative value in the Beijing model, suggesting that this variable
fails to effectively distinguish population distribution across different
areas. Additionally, the importance of POI variables remains relatively
balanced, indicating that different POI (e.g., commercial, trans-
portation, and recreational facilities) have little difference in their
impact on the spatial distribution of the population.

4.2.3. Spatial pattern of the estimated 40-m population grid

Based on the trained optimal RF models and 2022 auxiliary vari-
ables, 40-m resolution population raster data for the residential gath-
ering areas of Beijing and Shanghai in 2022 were estimated. To ensure
that the high-resolution population raster data remained consistent with
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Fig. 6. Scatter density plots of trained RF regression models: (a) Beijing; (b) Shanghai.
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macro-level statistics while preserving fine-scale details, these prelimi-
narily estimated rasters were calibrated using district-level official de-
mographic data. The results are presented in Fig. 8, compared with the
original 100-m resolution WorldPop population data from 2020.

The spatial aggregation of the population is the result of long-term
economic development and urbanization processes, exhibiting a high
degree of stability (Sato and Yamamoto, 2005). Therefore, a reasonable
population estimation should align with real-world spatial patterns. As
shown in Fig. 8, the 40-m population data estimated for 2022 preserves
the internal urban population structure and remains consistent with the
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overall trend of the original data. For instance, in Shanghai, the popu-
lation was primarily concentrated in districts west of the Huangpu River,
such as Hongkou, Jing’an, Huangpu, and the sides of Putuo, Xuhui, and
Yangpu districts that are closer to the city center. In contrast, the pop-
ulation in Pudong New District was relatively lower, mainly clustered
along the Huangpu River and around the Oriental Pearl Tower, with an
overall decreasing trend toward the east. Similarly, in Beijing, the
population was predominantly concentrated in Xicheng and Dongcheng
districts, as well as in the sides of Haidian and Chaoyang districts that
were closer to the city center. Whereas the population density decreased
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Fig. 8. Results of population downscaling estimation:

(a) 100-m WorldPop data of Beijing in 2020; (b) 40-m estimiated population data of Beijing in 2022; (c) 100-m WorldPop data of Shanghai in 2020; (d) 40-m

estimiated population data of Shanghai in 2022.

in areas further from the core region. These results align with the urban
development patterns of Shanghai and Beijing, as well as the spatial
distribution trends observed in the original WorldPop population data,
indicating that the RF model effectively comprehended the spatial
characteristics of population distribution.

Furthermore, from the perspective of visual observation, the RF
model effectively optimized the spatial distribution of the original
population data, making the adjusted population distribution more
reasonable and natural. For example, as for 100-m resolution WorldPop
population data, the population boundaries in Shanghai exhibited a
jagged distribution (Fig. 8c), resulting in relatively abrupt boundaries.
In contrast, the estimated 40-m data (Fig. 8d) achieved a smooth tran-
sition, demonstrating a more continuous population gradient. Similarly,
there was an overestimation of the population along the roads within
Beijing’s Fifth Ring, evident from the numerous red linear patches
(Fig. 8a). Nevertheless, the downscaled results at 40-m resolution
(Fig. 8b) eliminated this bias to a great extent. The results above indicate
that the 40-m population rasters, processed through refined down-
scaling models, shows improved capability in detailing local population
aggregation, thereby enhancing data quality.
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4.3. Identification and evaluation of nighttime light pollution

4.3.1. Spatial analysis of NLSDMI

The calculation values, statistical results, and spatial patterns of
NLSDMI in the residential gathering areas of the two megacities are
shown in Fig. 9.

Based on the formulas established in Section 3.2.3, the NLSDMI was
calculated in both megacities, as shown in Fig. 9(a) and Fig. 9(b). Ac-
cording to statistics, in the residential gathering area of Beijing, the
NLSDMI reached a maximum value of 64.69, with an average of 0.47. In
the residential gathering area of Shanghai, the NLSDMI had a maximum
value of 185.56 and an average of 0.49, indicating the presence of
prominent light pollution. These results highlight the spatial extent and
level of NTL supply-demand mismatch in the two megacities, with
Shanghai exhibiting a broader range of mismatch severity compared to
Beijing.

In addition, the spatial statistical analyses on the derived NLSDWI
are shown in Fig. 9(c)-(f). From the results of global spatial autocorre-
lation, the Global Moran’s I value for Beijing was 0.58 and for Shanghai
was 0.49, both significantly greater than zero (Z > 2.58, P < 0.01),
indicating a strong positive spatial correlation and clear spatial
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Fig. 9. Spatial patterns of NTL mismatch: NLSDMI of residential gathering areas in (a) Beijing and (b) Shanghai; Local Moran’s I cluster maps of NLSDMI in (c)
Beijing and (e) Shanghai (HH: high-high cluster; HL: high-low outlier; LH: low-high outlier; LL: low-low cluster); Moran scatter plots of NLSDMI in (d) Beijing and (f)

Shanghai; Logarithmic histograms of NLSDWI for (g) Beijing and (h) Shanghai

clustering of NTL mismatch in both regions. Compared with Shanghai,
the higher Global Moran’s I value for Beijing suggested a more
concentrated spatial distribution of light mismatch phenomena. The
local spatial autocorrelation maps (Local Moran’s I cluster maps) further
revealed the spatial distribution patterns of the NLSDWI. In both Beijing
and Shanghai, the dominant cluster types were LL (low-low) and HH
(high-high), indicating that the NLSDWI tends to exhibit homogeneous
clustering in most areas.

As shown in Fig. 9(g) and Fig. 9(h), the NLSDMI values for the Beijing
and Shanghai study areas exhibit an approximately normal distribution
after logarithmic transformation. This indicates a significant reduction
in data skewness and effective compression of extreme values. Such a
distribution pattern is more suitable for subsequent statistical analyses
and enhances the stability and reliability of the results.
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4.3.2. Spatial analysis of light pollution

Based on the threshold determination approach proposed in Section
3.2.3, areas with NLSDMI values greater than 1.00 in Beijing and greater
than 0.72 in Shanghai were identified as light-polluted areas, while
those with values less than or equal to these thresholds were classified as
non-polluted regions, as illustrated in Fig. 10(a) and Fig. 10(b).
Spatially, light pollution in Beijing was more evenly distributed, with a
noticeable tendency to align with roads, potentially affecting residents
living alongside these areas. In contrast, light pollution in Shanghai
displayed a localized clustering pattern, with high-pollution areas
mainly clustered in regions where industrial and residential areas are
mixed (such as Pudong and Baoshan). In some industrial zones, the
NLSDMI even exceeds 180, reflecting the combined effects of industrial
production and residential lighting.
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Fig. 10. Identified nighttime light-polluted regions in residential gathering areas of (a) Beijing and (b) Shanghai.

The statistical results of light pollution levels in different functional
areas of the residential gathering areas of the two megacities are shown
in Table 5. It can be seen that Beijing research area covers an area of
1023.77 km2, of which 115.61 km? (11.29 %) were classified as light-
polluted. Parks and green spaces (40.29 %) and residential areas
(38.92 %) accounted for the largest shares of the polluted regions. This
suggested that large ecological spaces (such as the Olympic Park) might
have experienced light pollution diffusion due to facilities like light
shows and pathway lighting, and that residential areas might have
suffered from intensified pollution caused by inefficient streetlight
design. Industrial areas made up only 5.88 % of the light-polluted land,
which was significantly lower than in Shanghai. This was likely related
to Beijing’s industrial relocation policies, which moved industries to
peripheral districts such as Tongzhou and Daxing. In Shanghai, the study
area encompassed 518.27 kmz, with 78.25 km? (15.10 %) identified as
light-polluted. Among these, residential areas (33.59 %) and industrial
land (30.40 %) represented the largest proportions. The higher pro-
portion of industrial land might be attributed to Shanghai’s role as a
manufacturing and port economy hub, where industrial parks operating
around the clock—such as chemical and automobile manufacturing
zones in Lingang and Baoshan—require continuous high-intensity
lighting. Although the proportion of light pollution in residential areas
was lower than in Beijing, the actual pollution density was higher when
considering the smaller study area in Shanghai. In the residential

Table 5
Areas and proportions of light pollution across different functional zones.
Beijing Shanghai
Area (km?) Proportion Area (km?) Proportion
Residential 45.00 38.92 % 26.29 33.59 %
Business office 0.68 0.59 % 3.07 3.93 %
Commercial service 2.60 2.25% 0.94 1.20 %
Industrial 6.80 5.88 % 23.79 30.40 %
Transportation stations 0.19 0.17 % 0.15 0.19 %
Airport facilities 3.24 2.80 % 3.59 4.58 %
Administrative 2.74 2.37 % 4.22 5.40 %
Educational 5.19 4.49 % 4.41 5.64 %
Medical 0.35 0.30 % 0.43 0.55 %
Sport and cultural 2.24 1.94 % 3.18 4.07 %
Park and green space 46.57 40.29 % 8.18 10.45 %
Total of polluted area 115.61 100.00 % 78.25 100.00 %
Total of study area 1023.77 518.27
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gathering areas of Beijing and Shanghai, residential zones exhibited a
notably high share of nighttime light pollution. This highlighted a sig-
nificant mismatch between light supply and demand, where residents’
low demand for nighttime light contrasted with actual excessive illu-
mination. Such over lighting not only resulted in resource waste but also
posed potential health risks to residents. Moreover, in both Beijing and
Shanghai, land designated for transportation hubs accounted for the
most minor proportion of light-polluted areas, at 0.17 % and 0.19 %,
respectively.

4.3.3. Results of field survey

The field survey results are summarized in Tables 6 and 7, and the
field photos are provided in the supplementary material (Table S1 and
Table S2).

Overall, the results of the field surveys are essentially consistent with
the findings of this study. Specifically: (1) In Shanghai, sites 1 and 2,
which are classified as Administrative and some Industrial areas that do
not operate at night, have very low human traffic at night. However, the
NTL intensity is not low, leading to relatively strong light pollution. (2)
Sites 6, 8, and 9 in Shanghai, and site 2 in Beijing, are categorized as
Business office and Commercial service. During our survey period, most
of the Business office areas were in an overtime working state. There-
fore, they have a high demand for lighting, and the human traffic is
relatively high. Similarly, the light intensity is also relatively high,
resulting in moderate light pollution. (3) Sites 10, 11, and 12 in
Shanghai have relatively high human traffic, but the light intensity is not
very high. Therefore, the light pollution is not severe. (4) Sites 4, 5, and
7 in Shanghai, and sites 3 and 5 in Beijing, are Residential and Park and
greenspace. There is a certain degree of light pollution in these areas,
indicating that these regions require more moderate nighttime lighting.

It is worth noting that site 3 in Shanghai, which is classified as Park
and greenspace, has relatively high human traffic at night. However, its
NTL intensity is very high. The field investigation found that the lights
used in this area emit dazzling light that is vertically projected down-
ward, resulting in a very high illuminance value and, consequently,
strong light pollution. This poses a danger to both the natural ecology of
the park and human health.
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Table 6
Field survey data of nighttime light pollution in Shanghai.
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Brightness value

ID Functional zone Geograplz;c ;:I;)ordmate Cars Individuals (LUX) Light pollution level
’ NO. 1 NO. 2 NO. 3 Mean
. . 121.5410,
1 Administrative 31.9240 1 1 26.5 31.2 24.5 27.40 13.70
. 121.6129,
2 Industrial 31.2420 3 1 43.5 41.3 39.8 41.53 10.38
121.
3 Park and greenspace 5537, 26 35 465.0 472.0 462.4 466.5 7.65
31.2239
. . 121.6131,
4 Residential 31.2407 5 7 59.4 110.6 57.8 75.9 6.33
121.6286,
5 Park and greenspace 31.2336 8 8 93.2 110.6 85.0 96.3 6.02
. . 121.5318,
6 Business office 31.2484 11 12 128.3 124.7 129.8 127.6 5.55
. . 121.6115,
7 Residential 31.2208 14 10 60.4 50.7 56.0 55.7 2.32
. . 121.6154,
8 Business office 31.1864 27 27 120.2 105.6 113.4 113.1 2.09
. . 121.5479,
9 Commercial service 31.1562 24 9 82.9 82.3 40.5 68.6 2.08
. . 121.6064,
10 Residential 31.1722 12 15 43.7 43.2 38.8 41.9 1.55
. . 121.3854,
11 Commercial service 31.1644 13 35 42.7 62.2 39.9 48.3 1.01
. 121.4614,
12 Industrial 31.1280 39 25 58.2 54.6 65.8 59.5 0.93
Table 7
Field survey data of nighttime light pollution in Beijing.
. . Brightness value
D Functional zone Geograp}g;c ;;)ordlnate Cars Individuals aux) Light pollution level
’ NO. 1 NO. 2 NO. 3 Mean
. 116.3267,
1 Medical 39.7302 7 12 119.6 114.8 110.3 114.9 6.05
. . 116.3649,
2 Commercial service 39.8507 16 11 137.5 130.2 128.7 132.1 4.89
. . 116.3268,
3 Residential 39,7262 7 4 42.3 35.1 37.3 38.2 3.48
. 116.3269,
4 Educational 39.7235 7 3 21.9 27.4 26.1 25.1 2.51
. . 116.3267,
5 Residential 30.7954 5 6 17.4 21.7 19.2 19.4 1.77

5. Discussion
5.1. Refined estimation of population distribution grid

In this study, a high-performance RF model was employed to
downscale 100-m resolution population data to a finer 40-m resolution.
This model was successfully applied to estimate the population distri-
bution for the year 2022, resulting in a very high-resolution spatial
population dataset. Compared with previous studies, this study achieved
competitive performance in key evaluation metrics and data resolutions
(R? = 0.93 in Beijing and R? = 0.81 in Shanghai at 40 m). For instance,
Zhou et al. (2024) used RF regression with multi-source geospatial data
to refine population data (R? = 0.59 at 100 m), while Liu et al., 2023b
applied RF-based downscaling of census data, achieving a relatively
higher accuracy (R?> = 0.83 at 150 m). This study effectively leveraged
comprehensive auxiliary variables to capture nonlinear relationships,
particularly by incorporating 40-m resolution SDGSAT-1 GLI data as one
of the key predictors. As a high-precision source of NTL information, this
dataset demonstrated superior performance in capturing and repre-
senting urban nighttime activity patterns. In addition, considering the
inherent differences among various POI data, they were categorized and
refined accordingly in this study. This approach effectively revealed the
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diverse relationships between different types of POIs and population
distribution.

As mentioned above, the RF model performed well in both two
megacities, but there were certain differences in model performance
between them, particularly in terms of the R? value. Additionally, the
RMSE and MAE metrics indicated that the prediction errors were smaller
in Beijing and larger in Shanghai. The MSLE and scatter density plots
revealed that, in low population density areas, prediction errors were
slightly higher in Shanghai. The differences in model performance may
be related to the adaptability of feature variables. In the Shanghai’s
model, the importance of the SDGSAT-1 GLI Blue Band and building
density was higher than in Beijing, suggesting that the population dis-
tribution in Shanghai may be influenced by a more complex interplay of
factors, leading to less stable relationships between variables and pop-
ulation distribution, which increased the difficulty of model fitting. In
contrast, the relationships between feature variables and population
distribution in Beijing appeared more direct. Furthermore, differences in
urban spatial structure may also contribute to the observed discrep-
ancies in model performance. As a monocentric metropolitan area,
Beijing’s employment opportunities are primarily concentrated in the
urban center, resulting in a more direct relationship between physical
features and population distribution, which facilitated more stable
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model fitting (Huang et al., 2015). In contrast, Shanghai’s polycentric
and mixed land-use urban structure, particularly in low-density areas, is
characterized by urban-rural transitions and new district developments
(Li et al., 2024; Ta et al., 2021; Zhang et al., 2019). These factors may
lead to a decoupling of physical characteristics from actual residential
populations, thereby increasing prediction errors in the model.

The WorldPop dataset used in this study, although undergoing
multiple calibration processes and being widely applied, still exhibits
spatial distribution biases. These biases are reflected in the model
training and feature importance ranking. For example, road density had
the largest contribution, which may be because dense road networks
improve the accessibility of transportation, logistics, and public services,
supporting higher population densities. However, it is also possible that
the methodology behind the WorldPop data generation heavily relies on
road network information, leading to an over-allocation of population
along roads, thus increasing the contribution of this variable. Addi-
tionally, the contribution of the POI residential variable is relatively
low, even showing a negative value in the Beijing model. Theoretically,
residential POIs should be positively correlated with population distri-
bution, as residential areas are the primary locations of human settle-
ments. However, WorldPop tends to allocate population to roads rather
than residential areas, which reduces the contribution of POI_residential
to the model.

This study explored feasible methods to acquire refined population
grids. High-precision population data with fine resolutions, by revealing
spatial distribution patterns of populations, provides crucial support for
various research fields that rely on spatially explicit population data,
such as urban planning, resource allocation, disaster assessment, and
social governance (Duan et al., 2024). The population grids can support
the monitoring, evaluation, and decision-making of several SDGs. Spe-
cifically, they can be applied to assess SDG 3 (Good Health and Well-
being) (Juran et al., 2018), SDG 4 (Quality Education) (Qiu et al.,
2019), and SDG 7 (Affordable and Clean Energy) (Gaughan et al., 2019),
and are particularly valuable in evaluating SDG 11 (Sustainable Cities
and Communities). They can measure disaster exposure to assess SDG
11.5 (Tuholske et al., 2021) and refine the percentage of urban pop-
ulations living in slums, informal settlements, or lacking adequate
housing to contribute to SDG 11.1.1 (Thomson et al., 2022). “Leave no
one behind” is one of the core principles of the SDGs, and approximately
half of the SDG indicators rely on population data for tracking progress
(Qiu et al., 2022). This highlights the critical importance of high-
precision grid-based population distribution data in monitoring the
progress of the SDGs. Therefore, further advancement of high-precision
population data research, with a focus on enhancing its usability and
accuracy, remain essential.

5.2. NLSDMI: the most sophisticated nighttime light pollution index to
date

Previous studies primarily focused on the phenomenon of light
pollution and its impacts (Mu et al., 2021; Xue et al., 2020). Drawing
inspiration from the concept of supply-demand relationships (Ye et al.,
2024), this study expanded light pollution research by exploring mis-
matches in nighttime light supply and demand, with a particular
emphasis on the imbalance between human needs and the spatial dis-
tribution of NTL sources. Additionally, this research was the first to
incorporate urban functional zone data. Functional zones, formed by
clustering similar socioeconomic activities, are characterized by a pri-
mary function (e.g., residential, educational, or commercial). These
zones represent critical components of urban areas, facilitating detailed
spatial division and offering insights into human interactions and de-
mands within different parts of the urban environment. This study
examined the issue from both supply and demand perspectives, inte-
grating urban functional zone data with nighttime light intensity in-
formation to compute demand weights for different zones. A formula
was developed to quantify the extent of mismatches between NTL supply
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and demand. Maintaining a reasonable balance between supply and
demand is essential, as mismatches could result in resource waste,
environmental degradation, and potential risks to human health and
ecosystems. The analytical framework proposed in this study provides a
fresh perspective on nighttime light distribution and management. It
also serves as a valuable reference for future urban lighting planning and
the pursuit of sustainable development.

This study introduced the concept of demand weights to address the
limitations of defining NTL demand solely based on population size.
Instead, demand weights for different urban functional zones were
calculated using the average NTL intensity per unit area. The results
revealed notable variations in NTL demand weights across different
types of urban functional zones. These disparities may be attributed to
several underlying factors, including: (1) Differences in the types of
socioeconomic activities: The dominant function of each zone largely
determines the intensity and characteristics of its lighting demand.
Commercial zones, characterized by vibrant nighttime economic activ-
ities, typically require high-intensity and prolonged lighting to extend
consumption hours and attract visitors. In contrast, residential zones
prioritize the well-being of inhabitants, necessitating a balance between
safety lighting and minimizing light intrusion. Industrial zones empha-
size task-oriented lighting, with illumination concentrated in specific
operational areas. (2) Temporal variations in human activity and stag-
gered demand: Human activity intensity and spatial distribution vary
considerably across functional zones throughout the day. Mobile phone
signaling data suggest that commercial zones exhibit sustained human
presence and activity into midnight, while activity in residential areas
declines sharply after 22:00. Moreover, certain special-purpose zones,
such as hospitals, require continuous high-intensity NTL to ensure the
operation of emergency access routes. (3) Variation in lighting equip-
ment types: Functional zones differ significantly in their lighting infra-
structure. For instance, airports employ high-mast floodlights and in-
ground LED luminaires to meet the safety requirements of aviation en-
vironments, illuminating runways, aprons, and adjacent parking areas
with high-intensity, large-coverage lighting. (4) Policy-driven regula-
tory constraints: Certain ecological and natural areas—such as urban
parks, wetlands, and green spaces—are subject to strict lighting controls
under “dark-sky” protection policies. These regulations aim to reduce
light pollution, preserve ecological integrity, and maintain conditions
suitable for astronomical observation, thereby significantly limiting
artificial illumination in such zones.

As a crucial component of modern urban infrastructure, NTL en-
hances nighttime safety and functionality, yet it has also led to
increasingly severe light pollution. Although light pollution is not
explicitly mentioned in the SDGs, it is closely linked to several goals,
particularly SDG 3 and SDGs 11-15 (Lyytimaki, 2025). The NLSDMI
proposed in this study provides a scientific and quantitative foundation
for light pollution management. It identifies redundant and misallocated
lighting resources, offering a more accurate reflection of urban lighting
suitability and environmental pressure than conventional light intensity
metrics. Guided by NLSDMI, street lighting can be dimmed in targeted
areas to improve sleep quality (Kyba et al., 2021), supporting SDG 3;
Restricting private lighting sources and quantifying light spillover can
improve energy efficiency (Bouroussis and Topalis, 2020), contributing
to SDG 7; additionally, establishing lighting zone classifications and
integrating ecological data into tailored lighting design can promote
more sustainable urban environments (Haddock et al., 2019; Tavares
et al., 2021), aligning with SDG 11. In summary, light pollution man-
agement based on NLSDMI represents a vital pathway toward achieving
multiple SDGs in a coordinated and evidence-based manner.

5.3. Differences in nighttime light pollution patterns among megacities
with specific functions

This study selected Beijing and Shanghai, two representative mega-
cities in China, as the research areas to explore the extent and spatial
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patterns of nighttime light pollution based on the NLSDMI developed.
The results revealed two major differences: (1) Differences in land-use
types with high NTL. In Beijing, a relatively large proportion of light-
polluted areas are associated with parks and green spaces, followed by
residential areas. Parks and green spaces typically require minimal
artificial lighting, and excessive illumination may disrupt local ecosys-
tems and wildlife habitats (Huang et al., 2023), while also reducing
urban livability. In contrast, besides residential areas, industrial areas in
Shanghai exhibit the second highest proportion of light pollution. This
may be due to the low population density in industrial areas, while
certain 24-h industrial operations generate high-intensity lighting. (2)
Differences in spatial distribution patterns of light pollution. Beijing
exhibits a more dispersed and evenly distributed pattern of light pollu-
tion. This may be related to its exemplary role as China’s political and
cultural center, leading to a more balanced urban development. In
contrast, Shanghai presents a more concentrated and pronounced
pattern of light pollution, with significantly higher NLSDMI values. This
is likely a result of its function as an economic center, where intensive
commercial and industrial activities drive greater demand for nighttime
illumination.

Cities differ significantly in their light demand and pollution char-
acteristics due to variations in functional roles and development levels,
which reflect their distinct economic, social, and environmental re-
sponsibilities. (1) In terms of urban functional positioning, economically
driven cities like Shanghai prioritize economic activities, with frequent
nighttime commercial and industrial operations generating high light
demand. Politically oriented cities like Beijing focus on administrative
and cultural functions, leading to more dispersed light demand. Light
pollution tends to be more evenly distributed in these cities, with
notable impacts along roads, within administrative zones, and in green
spaces. (2) In terms of development, advanced cities with well-
established infrastructure experience more frequent and intense night-
time light use, exacerbating light pollution issues. These cities should
focus on implementing energy-saving technologies and strengthening
light pollution control. Conversely, less developed cities, while currently
facing lighter light pollution due to lower economic activity and light
demand, may encounter growing challenges as urbanization accelerates.
Effective research and management of light pollution require careful
consideration of city-type differences. Strategies must be tailored to
align with each city’s functional roles and development characteristics,
ensuring targeted and effective mitigation measures.

5.4. Strategies for refined management of NTL in residential gathering
areas

As cities continue to develop, achieving the SDGs and advancing the
vision of human well-being and sustainable communities necessitate
more precise management of light pollution. Building on the findings of
this study, this paper offers targeted recommendations from various
perspectives to support efforts in mitigating light pollution, enhancing
urban lighting environments, and fostering sustainable wurban
development.

(1) Adopt targeted lighting strategies. In residential areas, imple-
ment human-centered smart dimming systems that dynamically
adjust brightness at night based on actual demand, thereby
minimizing disruption to residents’ sleep and well-being. In parks
and green spaces, reduce unnecessary decorative lighting and
enforce a night-time lighting curfew (e.g., 23:00-05:00) to pre-
serve natural darkness and protect ecosystems and wildlife hab-
itats (Xue et al., 2020). In industrial zones, promote the adoption
of energy-efficient, environmentally friendly lighting systems and
strictly regulate external illumination during non-operational
hours to minimize negative effects on surrounding areas.

(2) Refine urban land-use planning. Incorporate light-pollution
buffer zones into functional zoning (Gaston et al., 2015; Wei
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et al., 2025): establish green belts or low-illumination corridors
between high-intensity commercial districts and residential
neighborhoods, using vegetation and terrain to block light spill-
over and improve nocturnal visual comfort for residents. Impose
strict lighting thresholds on ecological corridors—such as parks,
riverbanks, and wetlands to balance ecological protection with
nighttime mobility and safety.

Innovate lighting facilities and technologies. Encourage the
use of low-color-temperature, low-intensity luminaires to miti-
gate the proportion of blue light and its impacts on human health
and ecosystems (Lin et al., 2023; Liu et al., 2024). Deploy smart
streetlights to achieve on-demand lighting and maximize energy
savings (Pardo-Bosch et al., 2022). Promote modular LED fixtures
and plug-and-play control units to streamline maintenance and
upgrades, extend equipment lifespan, and reduce life-cycle en-
ergy consumption.

3

-

5.5. Limitations and prospects

This study explored and applied SDGSAT-1 GLI data to derive 40-m
resolution population estimates for 2022 and conducted a preliminary
investigation into light pollution. However, several aspects require
further exploration. The limitations of this study are outlined below.

(1) The availability and accuracy of data require further
improvement. This study employed SDGSAT-1 GLI data with
basic preprocessing. However, visual inspection and comparisons
with other studies suggest that the data may retain residual noise
and cloud artifacts that are challenging to remove. Although this
study utilized high-quality NTL images, future research using
lower-quality data will need more robust and comprehensive
preprocessing methods. Additionally, the urban functional zone
data used in this study were relatively outdated. While correc-
tions were made using POI data, discrepancies with the actual
urban structure remain. Furthermore, the dataset lacked road
information, a critical urban component that should be integrated
into future studies to enhance accuracy and completeness.

More accurate scale transfer models need to be developed.

This study utilized a RF model for population estimation, suc-

cessfully capturing nonlinear relationships between population

data and auxiliary variables. However, the model’s performance
varied across different cities, with inconsistent results. Future
research should prioritize optimizing model parameters and ar-
chitecture and exploring models with enhanced migratability.

Additionally, incorporating auxiliary variables more strongly

correlated with the target variable and refining variable selection

methods are critical for improving accuracy and applicability of
the model.

(3) The light pollution evaluation method remains to be further
optimized. This study defined urban light pollution through a
supply-demand framework, calculated mismatch indices, and
developed zonal maps of nighttime light pollution. It further
analyzed factors such as population distribution, urban func-
tional zones, and intercity differences. However, the findings
were not validated through comprehensive and systematic in-
vestigations. Although the field survey based on statistical
random sampling conducted by this study can provide some field
information, the limitations of the survey coverage, insufficient
spatial representation of the sample points, insufficient syn-
chronization of measurement time, irregular instrument opera-
tion, and deviations in the counting of pedestrians and vehicles
will ultimately affect the accuracy and generalizability of the
results. Moreover, the process of determining demand weights
could be further improved.

(2
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6. Conclusion

This study provides a comprehensive assessment of nighttime light
pollution in typical megacities, taking the residential gathering regions
of Beijing and Shanghai as case studies. By leveraging SDGSAT-1 GLI
imagery and other multi-source high-resolution spatial data, a novel
index (NLSDMI) with 40-m resolution was developed. With the help of
NLSDMI and its spatial distribution, the imbalance between nighttime
lighting supply and human activity demand was finely quantified, and
key areas affected by light pollution was further identified. In the resi-
dential gathering area of Beijing, the light pollution area reached
115.61 km? (11.29 %), mainly distributed in green spaces and resi-
dential zones. In Shanghai, the situation in residential gathering are was
more severe, with an affected area of 78.25 km? (15.10 %), mainly
concentrated in residential and industrial zones. These findings high-
lighted the pressing need for tailored management of urban spaces to
enhance urban sustainability, such as targeted lighting strategy, energy-
efficient technology, and refined urban planning. Future research should
focus on enhancing data accuracy, improving validation methods, and
exploring the applicability of findings to cities with diverse types and
scales, thus providing broader theoretical support and practical guid-
ance for global SDGs-oriented urban management.

The significance of this study lies in its innovative approach to
quantifying and analyzing nighttime light pollution from both the sup-
ply and demand perspectives. It is the first to employ high-resolution
SDGSAT-1 GLI imagery to provide a fine-scale representation of NTL
supply, and to estimate the spatial distribution of lighting demand based
on RF-downscaled population data and weighted urban functional
zoning. A continuous index of nighttime light pollution (NLSDMI) was
constructed to quantify the imbalance between lighting supply and de-
mand, thereby enabling the identification of key light-polluted areas. By
revealing the mismatch, this study offers valuable insights for opti-
mizing urban lighting and advancing the achievement of the SDGs.
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