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A B S T R A C T

Nighttime light pollution has become an increasingly serious issue in rapidly urbanizing megacities. It not only 
disrupts circadian rhythms and affects mental health, but also leads to energy waste and undermines the stability 
of urban and surrounding ecosystems, posing a significant threat to sustainable development. This study eval
uated nighttime light pollution in the residential gathering areas of two typical megacities in China (Beijing and 
Shanghai) using 40-m SDGSAT-1 glimmer imagery (reflecting actual supply) and population grids (reflecting 
human demand) refined by the high-performance Random Forest model (with R2 values of 0.93 for Beijing and 
0.81 for Shanghai). By integrating urban functional zoning data to supplement the demand for nighttime 
lighting, a Nighttime Light Supply-Demand Mismatch Index (NLSDMI) was developed to quantify the imbalance 
of nighttime light between supply side and demand side. The results showed that Shanghai’s nighttime light 
pollution area covered 78.25 km2 (15.10 %), a higher proportion than Beijing’s 115.61 km2 (11.29 %) of the 
study area. Shanghai also exhibited higher peak NLSDMI values. In both cities, residential zones were among the 
primary contributors to nighttime light pollution. Additionally, in Beijing, the largest share was distributed in 
parks and green spaces, while in Shanghai, the second major distribution was found in industrial zones. The 
spatial patterns of nighttime light pollution reflected the distinct characteristics of the two megacities: Beijing 
focuses on cultural and administrative functions, while Shanghai tends to play its role as an economic hub. 
Accordingly, feasible countermeasures, including targeted lighting strategy formulation, urban land-use planning 
refinement and energy-saving lighting technology innovation, were proposed to mitigate light pollution and 
promote urban sustainability. This study demonstrated the promising potential of SDGSAT-1 glimmer imagery in 
advancing light pollution assessment and urban management. It also provides practical pathways toward the 
achievement of multiple Sustainable Development Goals (SDGs), especially SDG 3 (Good Health and Well-being), 
SDG 7 (Affordable and Clean Energy), and SDG 11 (Sustainable Cities and Communities). Future research should 
focus on enhancing data accuracy, improving validation methods, and exploring the applicability of findings to 
cities with diverse types and scales, thus providing broader theoretical support and practical guidance for global 
nighttime light pollution management.
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1. Introduction

With the rapid urbanization, human economic and cultural activities 
have become increasingly frequent, and the urban populations have 
continued to grow. The widespread application of nighttime lighting has 
invigorated socio-economic development and greatly facilitated pro
duction and daily life. However, the intensity of nighttime lighting has 
risen sharply in recent years, with its spread becoming unplanned and 
surpassing actual needs (Huang et al., 2021; Niu et al., 2021; Stone, 
2018). This uncontrolled trend has led to severe light pollution, which 
poses profound challenges to human health, energy efficiency, and 
ecological sustainability. The escalating severity of this issue makes it an 
urgent topic that needs attention and resolution. To tackle the series of 
global challenges confronting human society in the 21st century, the 
United Nations (UN) set forth 17 Sustainable Development Goals (SDGs) 
(UN, 2015). Many of them align with the challenges posed by light 
pollution, emphasizing the importance of implementing effective mea
sures. Among them, SDG 7 (Affordable and Clean Energy) advocates for 
improving energy efficiency. However, disorderly nighttime lighting not 
only results in significant electricity waste but also increases carbon 
emissions, thereby hindering sustainable energy development (Gaston 
and Miguel, 2022). Additionally, SDG 3 (Good Health and Well-being) 
aims to ensure healthy lifestyles and promote the physical and mental 
health of all individuals. Urban nighttime light pollution has been shown 
to disrupt the human circadian rhythm, lead to sleep disorders and 
cardiovascular diseases, and even impair mental health (Levin et al., 
2020). Moreover, SDG 11 (Sustainable Cities and Communities) em
phasizes the importance of maintaining prosperity and resource balance 
during urban development, while striving to build sustainable commu
nities. However, excessive nighttime lighting can disturb urban and 
surrounding ecosystems, diminishing the quality of life and the aesthetic 
experience of nighttime landscapes (Lis et al., 2024). Therefore, con
ducting in-depth research on urban nighttime light pollution, depicting 
its spatial characteristics, and proposing practical solutions can help to 
minimize unnecessary energy waste and health losses while meeting the 
human rational needs of production and daily life, and eventually ach
ieve sustainable urban development (Barua et al., 2024; Tavares et al., 
2021; Zielinska-Dabkowska and Bobkowska, 2022).

Satellite remote sensing technology, with its advantages of broad 
coverage, real-time monitoring, and high timeliness, has provided 
valuable spatiotemporal data for urban-related studies (Zhu et al., 
2019). Unlike traditional daytime remote sensing products, nighttime 
satellite images provide a large-scale indication of Earth’s illumination 
intensity, showing the potential to better assess light pollution (Bagheri 
et al., 2023; Ye et al., 2024). Especially for accurate urban monitoring, 
the demand for higher-precision nighttime light (NTL) data is becoming 
increasingly urgent. Historically, commonly used NTL data include 
DMSP-OLS and NPP-VIIRS. However, DMSP-OLS suffers from low 
spatiotemporal resolution, data saturation, and pixel blooming, all of 
which significantly degrade data quality and limit its applicability 
(Davies and Smyth, 2018). Although NPP-VIIRS data offers improved 
spatial resolution compared to DMSP-OLS, its resolution remains 
insufficient to meet the requirements for detailed urban monitoring. The 
Sustainable Development Science Satellite 1 (SDGSAT-1), launched in 
2021, holds promise to address the limitations of existing NTL data and 
introduce new scientific advancements. As the first global scientific 
satellite dedicated to supporting the UN 2030 Agenda for Sustainable 
Development (2030 Agenda), it is equipped with three advanced sen
sors: a Thermal Infrared Spectrometer, a Glimmer Imager, and a Mul
tispectral Imager, each designed to meet the scientific research needs of 
SDGs (Guo et al., 2022). Among them, the glimmer (GLI) imagery fea
tures an innovative design employing color bands and a panchromatic 
band. The spatial resolution of the color bands is 40 m, and that of the 
panchromatic band is 10 m. Compared to other NTL data, its high res
olution and multiple bands provide the most precise range, intensity, 
and type of illumination ever collected, allowing for detailed 

characterization of human activity patterns. Currently, scholars have 
conducted extensive SDGSAT-1 GLI-based studies. Li et al., 2023a
developed a dynamic village-scale demarcation method for built-up 
areas using SDGSAT-1 GLI data, providing a new perspective for fine 
feature extraction. Wu et al. (2024) proposed a method for extracting 
urban road networks from SDGSAT-1 GLI and validated it in multiple 
cities with complex road distributions. Liu et al. (2024b) proposed a 
novel index by integrating NTL intensity information from SDGSAT-1 
GLI data and building volume information from Digital Surface Model 
(DSM) data to extract built-up areas more accurately. These research 
cases demonstrate the significant potential of SDGSAT-1 GLI data in 
urban-related studies.

Light pollution is intrinsically linked to human activities (Walker 
et al., 2020), making population data an integral part of the study. Given 
the relatively focused study area and the need to match NTL images, 
high-resolution population gridded data is essential for detailed spatial 
analyses. Traditional population data is typically derived from census, 
while numerous studies have transformed them into gridded formats, 
resulting in several well-known open datasets. For example, the Gridded 
Population of the World (GPW) (Tobler et al., 1997) provides global 
population maps through efficient simple computational methods but 
cannot capture details. Datasets such as LandScan (Dobson et al., 2000), 
Global Rural-Urban Mapping Project (GRUMP) (Balk et al., 2006), and 
WorldPop (Tatem, 2017) utilize data-intensive dasymetric mapping 
approaches, leveraging fine-scale spatial auxiliary data as inputs for 
modeling to capture population heterogeneity. However, in high- 
density urban areas, the allocation accuracy still faces challenges (Xu 
et al., 2024). In this context, studies have emerged that use auxiliary 
data to downscale existing datasets. Ye et al. (2019) utilized a Random 
Forest (RF) model, integrating remote sensing images and points of in
terest (POI), to downscale county-level census data into 100 × 100 m, 
revealing a population map with higher accuracy than the WorldPop. 
Leveraging SDGSAT-1, Liu et al., 2023a refined the WorldPop popula
tion distribution to a 10-m resolution. Lei et al. (2024) applied a multi- 
scale geographically weighted regression model incorporating building 
footprints, NTL and POI to allocate county-level population to 100-m 
raster.

Due to the unordered sprawl of nighttime lighting caused by the 
accelerated urbanization, there has been an increasing number of 
studies on adopting NTL imagery to monitor and evaluate the nighttime 
lighting environment. Kuechly et al. (2012) explored the relationship 
between NTL intensity and land use, revealing that road-related upward 
light sources accounted for 31.6 % of the sources of light pollution. Tang 
et al. (Tang et al., 2020) combined night view photos of Changsha with 
POI data to analyze the spatial patterns of lighting in the urban area, 
identifying that commercial aggregation was the dominant source of 
light pollution. These studies focus on the sources of light pollution 
across different functional areas but have not explored the differences in 
how functional zones contribute to the generation and distribution of 
light pollution. Ye et al. (2020) integrated NPP-VIIRS data with popu
lation density to evaluate the balance between supply and demand for 
NTL from a human-centered perspective. Zhao et al. (2021) utilized NTL 
images and POI data to assess light pollution by examining its impact on 
urban residential environments. These studies have addressed the 
impact of nighttime lighting on human well-being. However, these 
existing studies have not comprehensively and finely revealed the 
spatial heterogeneity of the distribution and level of light pollution from 
the perspective of light supply and demand, thereby supporting 
increasingly sophisticated urban planning and lighting management.

Given the above background, this study focused on typical mega
cities in China, which is characterized by high economic prosperity and 
population density (The State Council of China, 2014), as case study 
areas. By utilizing high-resolution data exemplified by SDGSAT-1 GLI 
imagery and incorporating multi-source auxiliary data such as urban 
functional zones, the research aimed to quantifying the mismatch be
tween supply and demand of urban nighttime lighting. Overall, this 
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study developed a Nighttime Light Supply-Demand Mismatch Index 
(NLSDMI) to identify zones and evaluate levels of nighttime light 
pollution. Specifically, the phased targets were: (1) to obtain high- 
quality SDGSAT-1 NTL imagery; (2) to generate reliable 40-m popula
tion grids; and (3) to construct NLSDMI to analyze the spatial supply- 
demand relationship of NTL, and propose recommendations to boost 
SDGs such as SDG 3, 7, and 13.

In response to the current research gap, the main contributions of 
this study include: 

(1) Detailed characterization of NTL supply patterns based on 
new satellite imagery: Leveraging high resolution SDGSAT-1 
GLI data to comprehensively depict actual NTL supply patterns 
at a 40-m fine scale;

(2) Refined exploration of NTL demand patterns with AI-driven 
model and multi-source data: Utilizing 40-m resolution popu
lation grid data via RF-based downscale and urban functional 

zoning data to analyze NTL demand of residential gathering area 
in megacities, revealing the spatial distribution of actual regional 
lighting needs;

(3) Developed a refined remote-sensing index for assessing 
urban nighttime light pollution: Constructing a spatially 
refined index to evaluate the imbalance between NTL supply and 
demand, providing scientific supports for light pollution man
agement and optimizing urban lighting environments.

The rest of this paper is structured as follows: Section 2 introduces 
the study areas and data; Section 3 describes the methodology; Section 4
analyzes the results of nighttime light pollution assessment; Section 5
discusses the findings; and Section 6 summarizes the conclusions.

Fig. 1. Study areas and corresponding SDGSAT-1 GLI RGB imagery.
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2. Study area and data

2.1. Study area

This study focused on the residential gathering areas of Beijing and 
Shanghai in China (Fig. 1). These two cities were selected because they 
are the most representative megacities in mainland China, characterized 
by high levels of urbanization and vibrant economic activities, ranking 
among the top global megacities. According to Globalization & World 
Cities (GaWC), Beijing and Shanghai have been classified as Alpha+
cities since 2008 and have maintained this status (https://gawc.lboro. 
ac.uk/gawc-worlds/the-world-according-to-gawc/). They are also the 
only two megacities in mainland China at this level. In addition, the 
Global Cities Index (GCI) rankings show that Beijing has consistently 
ranked in the top ten over the past five years, while Shanghai has 
remained in the top twenty (https://www.kearney.cn/article/-/insight 
s/303836250). As the capital city located in the northern part of the 
North China Plain, Beijing serves as China’s political and cultural hub, 
with a GDP of 4.98 trillion CNY and a population of 21 million in 2024 
(https://tjj.beijing.gov.cn/tjsj_31433/tjgb_31445/ndgb_31446/20 
2503/t20250319_4038820.html). Positioned at the Yangtze River es
tuary, Shanghai is regarded as the most significant economic, financial 
and shipping center of China, with a GDP of 5.39 trillion CNY and a 
population of 25 million in 2024 (https://tjj.sh.gov.cn/tjgb/2025032 
4/a7fe18c6d5c24d66bfca89c5bb4cdcfb.html).

As representative examples of urbanization in China, the two cities 
have witnessed a significant rise in NTL intensity and a rapid expansion 
in NTL range over recent years, exacerbating nighttime light pollution. 
This emerging issue negatively impacts life quality of residents and 
significantly impedes energy efficiency and urban sustainability. Resi
dential gathering area with the highest population density and urbani
zation levels, usually serves as a key pivot for commerce, culture and 
transportation, playing a core role in supporting urban development. 
Therefore, selecting the residential gathering area of these two mega
cities as representative cases provides valuable insights into the typical 
characteristics of urban nighttime light pollution and responding stra
tegies for its mitigation.

In this study, the residential gathering area of Beijing is defined ac
cording to the “Beijing City Master Plan (2016-2035)”, covering 1387 
km2 and including the districts of Dongcheng, Xicheng, Haidian, Feng
tai, Chaoyang, and Shijingshan. And the residential gathering area of 
Shanghai is defined within the outer ring road based on the outer ring 
expressway from OpenStreetMap road data (Ta et al., 2020; Yue et al., 
2021), which covers 662 km2, including the districts of Huangpu, 
Hongkou, Jing’an, and parts of Pudong New District, Minhang District, 
Baoshan District, and Jiading District.

2.2. Data and preprocessing

2.2.1. SDGSAT-1 GLI imagery
The SDGSAT-1 GLI data used in this study comes from SDGSAT-1 

developed and operated by International Research Center of Big Data 
for Sustainable Development Goals (CBAS). Through the SDGSAT-1 
Open Science Program initiated by CBAS, researchers around the 
world can download SDGSAT-1 data by submitting research proposals 
online (https://www.sdgsat.ac.cn/). The satellite operates at an orbital 
altitude of approximately 505 km with a swath width of 300 km. The 
NTL images obtained by the Glimmer Imager on board SDGSAT-1 
contain four bands: a panchromatic band with a spatial resolution of 
10 m and the RGB bands with a spatial resolution of 40 m. From the 
perspective of data quality, the SDGSAT-1 GLI images adopted in this 
study are from the RGB bands rather than the panchromatic band. 
Although the panchromatic images have higher spatial resolution, they 
have more obvious stripes and salt-and-pepper noise, requiring more 
complex preprocessing (currently there is no mature method system); on 
the contrary, RGB data has less noise and richer information, and is more 

suitable for direct applications in large-scale light pollution modeling 
(Wang et al., 2024).

In order to obtain higher-quality images initially and reduce the 
complexity of preprocessing, weather forecasts and flight schedules of 
Beijing Capital International Airport and Shanghai Hongqiao Interna
tional Airport were referred to, and clear days with no clouds or minor 
clouds were selected for image acquisition. The specific acquired dates 
and product IDs of screened SDGSAT-1 GLI data are shown in the 
Table 1.

To ensure the usability and accuracy of the SDGSAT-1 GLI data, this 
study conducted necessary preprocessing, which involved three steps: 

(1) Potential noise removal: The SDGSAT-1 RGB GLI imagery 
consists of three bands, where each band reflects light informa
tion in a standard RGB image. Visual inspection and statistical 
analysis of pixel values showed that noise points exhibit 
abnormal patterns across the bands. Specifically, noise pixels 
display the minimum value in at least one band, while other 
bands show values greater than the minimum. Based on this 
observation, potential noise points were identified as those with 
minimum values in at least one band and higher-than-minimum 
values in other bands. The potential noise was extracted from 
each band, and noise points were removed accordingly.

(2) Radiometric calibration: To obtain physically meaningful NTL 
radiance information, the denoised data from each band were 
first converted into the NTL radiance values. The calibration 
parameters required for converting the SDGSAT-1 GLI data into 
NTL radiance values can be found in the header file of the original 
SDGSAT-1 GLI data. The file provides detailed calibration pa
rameters for each band of the Glimmer Image for Urbanization, 
with the calibration coefficients last updated on March 1, 2022. 
The specific conversion formula is as follows (Liu et al., 2024a):

L = DN×GAIN+BIAS (1) 

Where L represents the radiance value of the SDGSAT-1 GLI image, 
with units of W⋅m− 2⋅sr− 1⋅μm− 1, DN denotes the raw digital number of 
each band, GAIN and BIAS are the calibration parameters officially 
provided.

Next, calculate the total radiance values for quantifying light pollu
tion based on the light intensity contribution of the RGB three-color 
bands. The grayscale brightness of SDGSAT-1 GLI imagery is calcu
lated as follows (Grundland and Dodgson, 2007): 

B = 0.2989× LRed +0.5870× LGreen +0.1140× LBlue (2) 

Where B represents the grayscale brightness of the SDGSAT-1 GLI 
data, with units of W⋅m− 2⋅sr− 1⋅μm− 1, LRed, LGreen, LBlue denote the radi
ance values of the red, green, and blue bands, respectively. 

(3) Geometric correction: After comparing with the high-resolution 
standard color remote sensing imagery base map, a slight 
misalignment of roads was observed. To improve data quality, 
control points were used for image registration, allowing for 
more accurate application of SDGSAT-1 GLI imagery.

2.2.2. Other geospatial and statistical data
The population data used in this study was sourced from the dataset 

the University of Southampton shared on the WorldPop platform 
(https://hub.worldpop.org/geodata/summary?id=49919). The latest 
2020 WorldPop population data with a 100-m resolution was down
loaded for analysis. The dataset consists of six types, and this study 
focused on the data that has been adjusted to align with the national 
population totals reported by the UN. Estimates were made only for 
areas mapped as containing built-up settlements. The population data 
for each district was adjusted based on the permanent resident popu
lation figures from the “2021 Statistical Yearbook” and then resampled 
from the original 100-m resolution to a 40-m resolution.
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POIs are geographical points that represent important locations for 
human activities. Integrating POI data with multi-source remote sensing 
data can significantly enhance the accuracy of population distribution 
mapping (Guo et al., 2023b). The POI data used in this study were 
sourced from Amap, and six types of POI records closely related to the 
population in 2020 and 2022 were selected, including food, shopping, 
transportation facilities, residential areas, life services, and recreation. 
Since the spatial distribution of each POI category differs, the six POI 
data types were processed separately. The residential POI category 
directly reflected population distribution, and thus, the point-to-raster 
method was employed to convert POI data into raster grids. The 
remaining five categories, service-oriented POIs, had a diminishing 
spatial influence with distance, so the euclidean distance was calculated 
to assess their spatial impact (Li et al., 2023b). This results in six cor
responding spatial variables, each with a resolution of 40 m.

The road density data was derived from OpenStreetMap (www.ope 
nstreetmap.org). Road density was calculated at a spatial resolution of 
40 m using the line density tool in ArcGIS.

The building density data was derived from building footprint and 
height data for 77 cities nationwide in 2019, obtained from Baidu Map. 
Since building footprints and heights were unlikely to change signifi
cantly over time, this dataset was used as a reference. The calculation 
method is as follows: a 40 × 40 m fishnet was created for the study area, 
and the proportion of each grid cell covered by buildings was calculated. 
The grid data was then converted into GeoTIFF format, yielding building 
density with a spatial resolution of 40 m.

The Normalized Difference Vegetation Index (NDVI), Normalized 
Difference Built-up Index (NDBI), and Normalized Difference Water 
Index (NDWI) for 2020 and 2022 were derived from Landsat 8 satellite 
imagery available on Google Earth Engine (GEE). The satellite launched 
in 2013 has a spatial resolution of 30 m. The data used in this study was 
identified by the ID LANDSAT/LC08/C02/T1_L2. These three auxiliary 
variables were resampled to a spatial resolution of 40 m.

Digital Elevation Model (DEM) data comes from the Copernicus 
Digital Elevation Model (COP-DEM), a global 30-m resolution dataset 
released by the European Space Agency (ESA). This data was then 
resampled to 40 m to align with the data scale.

The urban functional zoning data was derived from the 2018 dataset 
of land use types in Chinese cities (Gong et al., 2020), which includes 5 
main categories and 12 subcategories. This dataset was created using 10- 
m satellite imagery from Sentinel-2 A/B in 2018, OpenStreetMap, NTL 
data (Luojia-1), POI data from Amap (including categories and quanti
ties), and Tencent social location data as input features. In this study, the 
data was validated and corrected using the updated POI data, resulting 
in the revised urban functional zoning data.

A summary introduction of all data used in this study are listed in 
Table 2.

3. Methods

The overall methodological framework applied in this study is shown 
in Fig. 2. The first component corresponds to Section 2.2 (Data and 
Preprocessing), which describes the preprocessing of SDGSAT-1 GLI 
data and other auxiliary datasets. The subsequent two components 
constitute the core of this framework. The second component corre
sponds to Section 3.1 (Population downscaling estimation), where the 
procedures for deriving estimated high-resolution population raster 
datasets based on the RF model are elaborated. The third component 
corresponds to Section 3.2 (Nighttime light pollution assessment), 

detailing the construction of the NLSDMI. After completing the above 
analysis process, this study proposed policy recommendations based on 
the research results obtained, which were discussed in Section 5.4.

3.1. Population downscaling estimation

The study area consisted of the residential gathering areas of two 
typical megacities, where there are dense artificial light sources, 
showing the characteristics of high dynamic range and complex color 
temperature (Yang et al., 2021). To accurately capture internal diversity 
of nighttime lighting and match SDGSAT-1 NTL data, higher-resolution 
population data is necessary to support refined analysis. However, the 

Table 1 
SDGSAT-1 GLI data.

Municipality Acquired Date Product ID

Beijing, China 2022-01-03 KX10_GIU_20220103_E116.94_N39.61_202200111720_L4A
Shanghai, China 2022-04-10 KX10_GIU_20220410_E119.90_N31.84_202200092994_L4A

Table 2 
Data list.

Data Name Description Source Purpose

SDGSAT-1 GLI 
imagery

SDGSAT-1 GLI RGB 
band images (40-m 

resolution)

International 
Research Center of 

Big Data for 
Sustainable 

Development Goals

Measuring the 
actual supply 

of NTL

WorldPop 
population

Constrained 
Individual countries 
2020 UN adjusted 
(100-m resolution)

Online database
Measuring the 
actual demand 

for NTL

Road density

Road density raster 
calculated using Line 
Density tool based on 
OSM road network

OpenStreetMap

WorldPop 
population 

raster 
downscaling

Building 
density

Building density 
raster calculated 
using the Point 

Density tool based on 
building footprint 

data

Baidu Map

NDBI
The remote-sensing 
index calculated on 
the GEE platform

Landsat 8 satellite 
from United States 
Geological Survey 
(available on GEE)

NDVI

NDWI

DEM

The global 30-m 
Copernicus Digital 
Elevation Model 

(COP-DEM)

European Space 
Agency

POI_food
POI raster calculated 
using the Euclidean 

Distance tool
Amap

POI_shop
POI_transport
POI_recreation

POI_service

POI_ residential
POI raster produced 
using the Point-to- 

Raster tool

Demographic 
data

Statistical data of 
permanent 

population in each 
district in 2022 from 

the Statistical 
Yearbook of the 
corresponding 
municipalities 

published in 2023

Government open 
data

Adjusting 
population 
estimation

Urban 
functional 

zoning data

Verified and 
corrected urban 

functional zoning 
data based on 

updated POI data

Existing studies
Measuring the 
actual demand 

for NTL
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population grid data currently in common use mainly come from 
WorldPop and LandScan. The former has a spatial resolution of 100 m 
but is currently only updated to 2020, while the latter meets the time 
validity of year 2022 but has a spatial resolution of only 1 km. Therefore, 
it is necessary to adjust the existing population grid to achieve time- 
effective and spatial-detailed research.

To achieve this, this study employed RF regression model for popu
lation downscaling estimation, following these three steps: 

(1) Model Construction: A nonlinear regression relationship was 
established based on the corrected 2020 WorldPop population 
grid at 40 m resolution, combined with other 15 spatial auxiliary 
variables with the same resolution, to develop a parameter- 
optimal RF model;

(2) Estimation of Population Data: The trained RF model was 
applied to 2022 auxiliary variables at 40 m resolution to estimate 
the population distribution for 2022;

(3) Regional Adjustment: The estimated population data was 
further refined using official demographic data to improve 
accuracy.

3.1.1. Principle of RF regression model
This study employed the RF model for regression tasks. RF was an 

ensemble machine learning algorithm based on decision trees, first 
proposed by Breiman (2001). It enhanced the robustness and accuracy of 
predictions by constructing multiple decision trees and aggregating their 
outputs through methods such as averaging or majority voting. The 
main processing steps were as follows: (1) Randomly sampling multiple 
training set from the sample data using the bootstrap method; (2) 
Constructing independent decision trees for each training set; (3) 
Randomly selecting a subset of features at each split node to determine 
the best split; (4) Aggregating the predictions of all decision trees to 
produce the final output. This structure provided RF with several 
notable advantages, such as high prediction accuracy, robustness to 
outliers, and effective prevention of overfitting. RF could be applied to 
classification task or regression task and effectively model nonlinear 
relationships between the dependent variable and multiple independent 
variables. It had been successfully utilized in downscaling studies and 
exhibited overall robust performance (Yang et al., 2020; Zhang et al., 
2022).

Fig. 2. Overall methodological framework.
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3.1.2. Construction of auxiliary variable database
This study employed the 2020 population gridded data with a 40-m 

resolution after resampled from the 100-m WorldPop raster and cali
brated it using demographic data from statistical yearbooks, as one of 
the key dependent variables for population downscaling estimation. The 
purpose of this correction is to reduce the resampling bias of the original 
WorldPop data in characterizing the population distribution at smaller 
spatial scales, thereby providing more reliable support for subsequent 
modeling.

In selecting other auxiliary variables, this study focused on acquiring 
all possible spatial information closely related to population distribu
tion. Furthermore, the feature importance evaluation in the RF model 
was utilized to identify key auxiliary variables and improve the effi
ciency and interpretability of the model. Specifically, this process 
involved testing different combinations of variables and conducts 
repeated training to evaluate the contribution of each variable to the 
model performance, then assess its explanatory power for the spatial 
distribution of the population. After eliminating redundant or irrelevant 
variables with small contributions through the above feature engineer
ing process, this study screened out 15 key variables as auxiliary factors 
for population downscaling estimation. The auxiliary variables include: 
(1) Satellite optical bands: SDGSAT-1 GLI Red Band, Green Band, and 
Blue Band; (2) Urban built environment factors: Road density, Building 
density, and DEM; (3) Remote sensing indices: NDBI, NDVI, and NDWI; 
(4) POI-drived factors: POI_food, POI_shop, POI_transport, POI_r
esidential, POI_service, and POI_recreation. The visualized groupings of 
the variables were presented in the supplementary material (Fig. S1 and 
Fig. S2).

3.1.3. Execution of RF regression model
This study employed MATLAB (Version: R2024a) to build parameter- 

optimal RF regression models. The specific steps are outlined as follows: 

(1) Data standardization: All 40-m raster data were standardized to 
the World Geodetic System 1984 geographic coordinate system, 
ensuring consistent dimensions and grid alignment. And the 
dependent and independent variables in 2020 were imported into 
MATLAB.

(2) Model training and prediction: Then the regression relation
ship between the 40-m population data and other auxiliary var
iables in 2020 was modeled using the RF. The optimal parameters 
of the model were determined through iterative optimization 
using grid search and 5-fold cross-validation. Expressly, the 
number of decision trees was set to 50–1000, the maximum depth 
of a single tree is set to 0–20, the minimum number of samples 
required for node splitting was set to 2–20, and the minimum 
number of samples in each leaf node was set to 1–10 to enhance 
the stability and predictive accuracy of the model. In addition, 
the split ratios of the training set and validation set were 70 % 
and 30 % respectively. Out-of-bag (OOB) prediction was enabled 
to evaluate model performance, eliminating the need for a 
separate test dataset.

(3) Feature importance analysis: After model training, feature 
importance was then calculated based on the OOB data to assess 
the contribution of each auxiliary variable to the target depen
dent variable. Based on the variable ranking, significantly 
redundant variables were eliminated, and steps (1)–(3) were 
repeated until the model performance reached the optimal level.

(4) Model accuracy evaluation: The optimal model was applied to 
obtain the fitted values of the 40-m resolution population data in 
2020 and then compared with the actual values. The performance 
of the model was reflected by the Coefficient of Determination 
(R2) (Hutengs and Vohland, 2016), Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE) (Hodson, 2022), and Mean 
Squared Logarithmic Error (MSLE) calculated (Abdelrahim and 

Yücel, 2025). The formulas for these evaluation metrics are as 
follows:

R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − y)2

(3) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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√

(4) 

MAE =
1
n
∑n

i=1
|yi − ŷi| (5) 

MSLE =
1
n
∑n

i=1
[log(yi + 1) − log(ŷi + 1) ]2 (6) 

Where yi represents the actual value, ŷi represents the predicted 
value, and y represents the mean of the actual values. i denotes the i-th 
spatial pixel, n is the total number of spatial pixels.

3.1.4. 40-m population girds estimation
This study assumed that the regression relationship for the same 

regional data can be transferred and remain generally consistent be
tween similar years, which has been supported by several studies 
(Knibbe et al., 2014; Masselot et al., 2018; Wu et al., 2025). Specifically, 
the relationship between the population raster and auxiliary variables in 
2020 captured by RF was applied to estimate population raster in 2022. 
As such, the model parameters trained on 2020 data were also applied to 
the 2022 auxiliary variables.

To ensure that the estimated population data is more accurate and 
aligns with reality, this study conducted a district-level adjustment of 
the RF-estimated population based on the 2022 resident population 
figures for each district from the 2023 Statistical Yearbook of each 
megacity. The specific correction formula is as follows: 

Acorrected,i,j = Aij ×
Pi

∑
Aij

(7) 

Where Aij represents the population number on the j-th grid cell of 
the i-th district after downscaling; Pi represents the resident population 
of the i-th district (from the statistical yearbook); 

∑
jAij represents the 

total downscaled population for all grid cells in the i-th district, used to 
calculate the correction ratio; Acorrected,i,j represents the corrected popu
lation for the j-th grid cell in the i-th district.

3.2. Nighttime light pollution assessment

From the dual perspectives of supply and demand, the mismatch 
between nighttime lighting and human activities was quantified by 
establishing a gridded index NLSDMI. Then the areas affected by light 
pollution was indenfied where NTL exceeded actual human demand. 
Specifically, areas where NLSDMI greater than a certain threshold were 
classified as light-polluted, while areas where NLSDMI less than or equal 
to the threshold were classified as non-polluted (the threshold was 
dynamically determined based on the distribution of NLSDMI in 
different regions). In the identified light pollution areas, the higher the 
NLSDMI, the higher the mismatch degree and the more prominent the 
pollution problem.

3.2.1. Supply-side NTL intensity quantification
The supply-side NTL intensity was simply represented by actual 

lighting intensity derived from SDGSAT-1 GLI images. The radiance 
values of the three bands (RGB) were synthesized and converted into 
grayscale brightness values according to Section 2.2.1. These brightness 
values were then normalized using min-max normalization, as shown in 
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Eq. (8). 

Snormal =
B − Bmin

Bmax − Bmin
(8) 

Where Snormal represents the normalized actual NTL intensity, B 
represents the grayscale brightness derived from the RGB data as 
calculated before, measured in W⋅m− 2⋅sr− 1⋅μm− 1.

3.2.2. Demand-side NTL intensity quantification
The demand-side NTL intensity primarily reflects human rational 

demand for nighttime illumination. Since the residential gathering areas 
of megacities often consist of multiple functional zones, the demand for 
NTL varies across different zones and cannot be directly represented by 
population density alone. Therefore, this study introduced a functional 
zone type-specific demand weight system to quantify the differences in 
NTL demand.

Hence, the demand weights were determined by both urban func
tional zoning and actual lighting intensity. Since the original urban 
functional zoning data collected excluded road areas, roads were not 
considered in demand weight determination. The specific steps for 
calculating the weight were as follows: (1) The Zonal Statistics as 
Table tool in ArcGIS was used to calculate the number of grid cells and 
the total grayscale brightness value for each of the 11 secondary func
tional categories (Residential, Business office, Commercial service, In
dustrial, Transportation stations, Airport facilities, Administrative, 
Educational, Medical, Sports and cultural, Park and green space); (2) 
The raster data used in this study had a resolution of 40 m, meaning that 
each grid cell covered an area of 1600 m2. Based on this, the total area of 
each functional zone was calculated; (3) The total grayscale brightness 
value of each functional zone was then divided by its total area to obtain 
the unit-area NTL intensity, which was taken as the demand weight for 
each functional zone as shown in Eq. (9). 

Wi =

∑ni

j=1
Bij

∑ni

j=1
Aij

(9) 

Where Wi represents the weight of the i-th urban functional zone, Bij 

represents the grayscale brightness of the j-th grid cell in the i-th urban 
functional zone, Aij represents the area of the j-th grid cell in the i-th 
urban functional zone. ni represents the total number of grid cells in the 
i-th urban functional zone. The demand weights for each functional zone 
in the two megacities calculated are shown in Table 3.

The demand-side NTL intensity was calculated as the product of 
population and demand weight, as shown in Eq. (10). The demand-side 
NTL intensity was normalized using min-max normalization, as shown 
in Eq. (11). 

Dj = Pj ×Wi (10) 

Dnormal =
Dj − Dmin

Dmax − Dmin
(11) 

Where Dj represents the demand intensity of the j-th grid cell, Pj 

represents the number of individuals in the j-th grid cell, Wi represents 
the weight of the i-th urban functional zone, Dnormal represents the 
normalized demand light intensity.

3.2.3. NLSDMI establishment and light pollution area identification
Finally, the normalized supply-side NTL intensity was divided by the 

normalized demand-side NTL intensity to obtain NLSDMI, as shown in 
Eq. (12). 

NLSDMI =
Snormal

Dnormal
(12) 

Where Snormal represents the normalized actual NTL intensity, Dnormal 

represents the normalized demand NTL intensity, and NLSDMI repre
sents the nighttime light supply-demand mismatch index. Visual repre
sentations of the data used in constructing the index were included in 
the supplementary material (Fig. S3 and Fig. S4). Furthermore, the 
derived NLSDWI was spatially analyzed using Global and Local Moran’s 
I to intuitively reveal its distribution pattern.

The NLSDWI developed in this study is a continuous spatial metric 
designed to quantify the degree of mismatch between NTL and actual 
human demand, which are positively associated with the risk of light 
pollution. According to a widely accepted definition, “Light pollution is 
the presence of any unwanted, inappropriate, or excessive artificial 
lighting” (Smith et al., 2023). Therefore, it is necessary to quantitatively 
determine the extent of affected areas to provide scientific references for 
light pollution management. In this study, thresholds were set as the 
mean plus one standard deviation of the log-transformed NLSDMI 
values. Areas with NLSDMI exceeding this threshold were classified as 
light-polluted, while areas with values less than or equal to the threshold 
were classified as non-polluted.

Specifically, the threshold determination involved three steps: (1) 
The original NLSDMI distribution was right-skewed (long right tail), so a 
base-10 logarithmic transformation (log10) was applied, resulting in an 
approximately normal distribution of the transformed values. (2) Ac
cording to the empirical rule of normal distribution, about 68 % of 
values lie within the range of mean ± one standard deviation. Values 
exceeding the mean plus one standard deviation were considered 
significantly higher than average or anomalously elevated, which served 
as a robust and interpretable criterion to identify light-polluted areas. 
(3) Since the threshold was determined in the log-transformed domain, 
it was finally converted back to the original scale using the exponential 
function.

3.2.4. Field survey
To validate the accuracy of identifying light pollution areas derived 

from multi-source data in this study, field surveys were conducted in 
both Beijing and Shanghai. Given the substantial investment of 
manpower, material, and resources for field surveys, a representative 
sampling strategy was adopted. Specifically, within various functional 
zones of each city, the central points of pixel with relatively high (top 5 
%) or low (bottom 5 %) NLSDMI value were randomly selected as survey 
points, and their geographic coordinates (latitude and longitude) were 
recorded. The subsequent point screening process comprehensively 
compared long-term remote-sensing images (such as NPP-VIIRS and 
high-resolution visible light images), land use maps, and urban planning 
documents to ensure that the selected locations were stable in both 
spatial and functional attributes.

The field surveys were carried out on clear nights with minimal cloud 
cover and relatively stable air quality conditions, specifically during the 
peak period of artificial lighting (20:00–22:00, UTC + 8). At each 
selected location, the following investigation procedures were under
taken: (1) the nighttime environment was documented through on-site 

Table 3 
NTL demand weights of Beijing and Shanghai.

Zonal Function Beijing Shanghai

Industrial 0.07 0.09
Park and green space 0.06 0.10

Airport facilities 0.06 0.07
Transportation stations 0.18 0.19

Educational 0.11 0.12
Residential 0.11 0.11

Business office 0.29 0.29
Commercial service 0.12 0.23
Sport and cultural 0.16 0.23

Administrative 0.14 0.11
Medical 0.15 0.14
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photography; (2) illuminance levels (in LUX) were measured using three 
TA636A digital light meters, and the average value was calculated to 
ensure measurement reliability; and (3) the number of passing vehicles 
and pedestrians was recorded over a standardized 5-min observation 
period. These measurements were subsequently used to estimate the 
local nighttime light pollution level (expressed as a relative value, i.e., 
the average illuminance measured by the three instruments divided by 
the sum of the number of vehicles and pedestrians).

4. Results

4.1. Quality evaluation of SDGSAT-1 GLI imagery

4.1.1. Denoising result
In this study, potential noise was identified through visual inspection 

combined with pixel-based statistical analysis. Taking the local Red 
band of SDGSAT-1 GLI in Beijing as an example, the denoised result 
obtained were shown in Fig. 3. It can be observed that the potential noise 
identified was mainly distributed near the road network, especially in 
the intersection of roads where human activities are complex and 
lighting facilities are dense. This is because the dynamic light sources 
represented by vehicle lights in these areas are easily captured by the 

sensor as abnormal values, and the spectral superposition of multiple 
static light sources may also cause interference in the sensor’s recogni
tion. Moreover, the denoising method proposed effectively removed 
salt-and-pepper noise and saturation overflow artifacts in most urban 
blocks. Image distortions were significantly reduced and clarity was 
improved as rough and blurry areas were eliminated.

4.1.2. Spatial distribution analysis of SDGSAT-1 NTL intensity
The SDGSAT-1 GLI images of the residential gathering areas of the 

two megacities obtained by preprocessing according to the method in 
Section 2.2.1 are shown in Figs. 4 and 5. It can be observed that the NTL 
was primarily concentrated in the central regions (such as the com
mercial districts within Third Ring Road of Beijing and the Bund and 
Lujiazui along both banks of the Huangpu River in Shanghai), with 
relatively sparser distribution in the surrounding areas, though scattered 
small-scale clusters were also present. It’s worth noting that the road 
network was visible due to high spatial resolution of SDGSAT-1, 
reflecting the spatial characteristics of urban transportation of these 
megacities: Beijing’s transportation network presents a mixed structure 
of ring, radial and chessboard shapes, while Shanghai’s road network 
presents the characteristics of ring and grid. Additionally, when 
considering the separate radiation values for each RGB band, it is 

Fig. 3. (a) Red band GLI image of Beijing with noise; (b) Results of potential noise identification; (c) Partial image after potential noise removal. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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evident that the radiation in the Blue Band was lower compared to the 
Red Band and Green Band, particularly near the road areas. This is 
because the current nighttime artificial lighting sources Beijing and 
Shanghai are mainly Light Emitting Diode (LED) that emit warm yellow 
light and white light, while cool blue light has been restricted in layout 
due to the need to avoid its damage to human eyes (B. Guo et al., 2023a).

4.2. Results of population downscaling estimation

4.2.1. Performance evaluation of RF models
This study employed the RF model to establish the regression rela

tionship between population data and auxiliary variables. Model per
formance was assessed using R2、RMSE, MAE and MSLE. Table 4. 
presents the accuracy evaluation results of parameter-optimal RF 
models: The RF trained in the residential gathering area of Beijing 
achieved an R2 of 0.93, demonstrating an excellent fitting relationship. 
Additionally, the RMSE and MAE were 11.11 and 7.60, respectively, 
indicating minimal error between predicted and actual values. 
Furthermore, the MSLE was 0.30, suggesting that the model maintained 
high predictive accuracy across different population density regions 
with relatively low errors. While the model trained in the residential 
gathering area of Shanghai yielded an R2 of 0.81, which, although 
slightly lower than Beijing, still reflected a strong fitting relationship, 
confirming the effectiveness of prediction in this region. The RMSE and 
MAE were 36.70 and 26.06, respectively, indicating some level of error, 
but the overall predicted trend remained consistent with the actual 

population distribution. Meanwhile, the MSLE was 0.46, suggesting 
slightly higher errors in some low-population-density areas, but without 
significantly affecting overall prediction accuracy. Overall, the RF 
models developed in this study demonstrated strong predictive capa
bility in both study areas. The RF performed with higher accuracy in 
Beijing, while the Shanghai model maintained satisfactory 
interpretability.

In order to intuitively demonstrate the relationship between the 
predicted value and the actual value of the RF model, scatter density 
diagrams were further drawn, as shown in Fig. 6. The colors in the image 
represented point density, with red indicating high-density areas and 
blue indicating low-density areas. Overall, the RF regression model 
demonstrated favorable fitting performance in both study areas, with 
data points in both figures distributed along a straight line. The model 
performed better in Beijing, achieving a higher degree of agreement 
between predicted and actual values. Although the Shanghai model 
exhibited some deviation, it still demonstrated good applicability. 
Among them, the scatter distribution in Beijing was closer to the “y = x” 
line, with a regression equation slope of 0.8876 and an intercept of 5.95. 
This suggested that the model’s predictions were relatively close to the 
actual values, with a smaller overall error and better fitting perfor
mance. It was also observed that data points were more densely clus
tered within the low to medium population range (0− 100), implying 
higher prediction accuracy in this range. Similarly, the scatter plot for 
Shanghai also exhibited an overall trend, with a regression equation 
slope of 0.7186 and an intercept of 33.88, indicating that the predicted 

Fig. 4. NTL radiance values (W⋅m− 2⋅sr− 1⋅cm− 1) of SDGSAT-1 GLI images for the residential gathering area of Beijing: (a)-(d) represent the red, green, blue bands and 
grayscale brightness, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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values in Shanghai were generally lower than the actual values. The 
error increased, and the scatter points became more dispersed, partic
ularly in high-population-density areas (100− 300). Meanwhile, high- 
density points were mainly concentrated in low-population areas 
(0–100), suggesting that the model maintained relatively stable pre
diction accuracy in these regions.

In general, the results above indicate that the proposed method is 
effective and can be applied to subsequently estimate the 40-m spatial 
population distribution for 2022.

4.2.2. Feature importance screening of RF models
Analyzing the feature importance of auxiliary variables is crucial to 

understanding the spatial distribution pattern of population and 
ensuring the robustness of regression relationships. By identifying key 
variables that significantly influence population distribution, the 
modeling process can be further optimized, ultimately enhancing the 
robustness and accuracy of estimated population. This study screened 

out key auxiliary variables by conducting feature importance analysis in 
combination with OOB data, and quantified the contribution of each 
variable to the model (as shown in Fig. 7).

Through experiments and a comprehensive consideration of the 
training models for the two cities, the final 15 key variables for RF 
training and prediction were determined based on the ranking of their 
contribution, as shown in Fig. 7. The results indicate that all auxiliary 
variables contribute to the model to varying degrees, validating the 
rationality and effectiveness of the selected variables. However, their 
contributions differ. Among these, the contribution of road density is the 
highest for both Beijing and Shanghai, followed by the remote sensing 
index NDBI, which measures the extent of surface building coverage. 
These two auxiliary variables play a critical role in the model. Notably, 
the POI_residential variable has the lowest contribution and even ex
hibits a negative value in the Beijing model, suggesting that this variable 
fails to effectively distinguish population distribution across different 
areas. Additionally, the importance of POI variables remains relatively 
balanced, indicating that different POI (e.g., commercial, trans
portation, and recreational facilities) have little difference in their 
impact on the spatial distribution of the population.

4.2.3. Spatial pattern of the estimated 40-m population grid
Based on the trained optimal RF models and 2022 auxiliary vari

ables, 40-m resolution population raster data for the residential gath
ering areas of Beijing and Shanghai in 2022 were estimated. To ensure 
that the high-resolution population raster data remained consistent with 

Fig. 5. NTL radiance values (W⋅m− 2⋅sr− 1⋅cm− 1) of SDGSAT-1 GLI images for the residential gathering area of Shanghai: (a)-(d) represent the red, green, blue bands 
and grayscale brightness, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4 
Table of RF accuracy evaluation.

Evaluation index Beijing Shanghai

R2 0.93 0.81
RMSE 11.11 36.70
MAE 7.60 26.06
MSLE 0.30 0.46
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macro-level statistics while preserving fine-scale details, these prelimi
narily estimated rasters were calibrated using district-level official de
mographic data. The results are presented in Fig. 8, compared with the 
original 100-m resolution WorldPop population data from 2020.

The spatial aggregation of the population is the result of long-term 
economic development and urbanization processes, exhibiting a high 
degree of stability (Sato and Yamamoto, 2005). Therefore, a reasonable 
population estimation should align with real-world spatial patterns. As 
shown in Fig. 8, the 40-m population data estimated for 2022 preserves 
the internal urban population structure and remains consistent with the 

overall trend of the original data. For instance, in Shanghai, the popu
lation was primarily concentrated in districts west of the Huangpu River, 
such as Hongkou, Jing’an, Huangpu, and the sides of Putuo, Xuhui, and 
Yangpu districts that are closer to the city center. In contrast, the pop
ulation in Pudong New District was relatively lower, mainly clustered 
along the Huangpu River and around the Oriental Pearl Tower, with an 
overall decreasing trend toward the east. Similarly, in Beijing, the 
population was predominantly concentrated in Xicheng and Dongcheng 
districts, as well as in the sides of Haidian and Chaoyang districts that 
were closer to the city center. Whereas the population density decreased 

Fig. 6. Scatter density plots of trained RF regression models: (a) Beijing; (b) Shanghai.

Fig. 7. Feature importance ranking.
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in areas further from the core region. These results align with the urban 
development patterns of Shanghai and Beijing, as well as the spatial 
distribution trends observed in the original WorldPop population data, 
indicating that the RF model effectively comprehended the spatial 
characteristics of population distribution.

Furthermore, from the perspective of visual observation, the RF 
model effectively optimized the spatial distribution of the original 
population data, making the adjusted population distribution more 
reasonable and natural. For example, as for 100-m resolution WorldPop 
population data, the population boundaries in Shanghai exhibited a 
jagged distribution (Fig. 8c), resulting in relatively abrupt boundaries. 
In contrast, the estimated 40-m data (Fig. 8d) achieved a smooth tran
sition, demonstrating a more continuous population gradient. Similarly, 
there was an overestimation of the population along the roads within 
Beijing’s Fifth Ring, evident from the numerous red linear patches 
(Fig. 8a). Nevertheless, the downscaled results at 40-m resolution 
(Fig. 8b) eliminated this bias to a great extent. The results above indicate 
that the 40-m population rasters, processed through refined down
scaling models, shows improved capability in detailing local population 
aggregation, thereby enhancing data quality.

4.3. Identification and evaluation of nighttime light pollution

4.3.1. Spatial analysis of NLSDMI
The calculation values, statistical results, and spatial patterns of 

NLSDMI in the residential gathering areas of the two megacities are 
shown in Fig. 9.

Based on the formulas established in Section 3.2.3, the NLSDMI was 
calculated in both megacities, as shown in Fig. 9(a) and Fig. 9(b). Ac
cording to statistics, in the residential gathering area of Beijing, the 
NLSDMI reached a maximum value of 64.69, with an average of 0.47. In 
the residential gathering area of Shanghai, the NLSDMI had a maximum 
value of 185.56 and an average of 0.49, indicating the presence of 
prominent light pollution. These results highlight the spatial extent and 
level of NTL supply-demand mismatch in the two megacities, with 
Shanghai exhibiting a broader range of mismatch severity compared to 
Beijing.

In addition, the spatial statistical analyses on the derived NLSDWI 
are shown in Fig. 9(c)-(f). From the results of global spatial autocorre
lation, the Global Moran’s I value for Beijing was 0.58 and for Shanghai 
was 0.49, both significantly greater than zero (Z > 2.58, P < 0.01), 
indicating a strong positive spatial correlation and clear spatial 

Fig. 8. Results of population downscaling estimation: 
(a) 100-m WorldPop data of Beijing in 2020; (b) 40-m estimiated population data of Beijing in 2022; (c) 100-m WorldPop data of Shanghai in 2020; (d) 40-m 
estimiated population data of Shanghai in 2022.
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clustering of NTL mismatch in both regions. Compared with Shanghai, 
the higher Global Moran’s I value for Beijing suggested a more 
concentrated spatial distribution of light mismatch phenomena. The 
local spatial autocorrelation maps (Local Moran’s I cluster maps) further 
revealed the spatial distribution patterns of the NLSDWI. In both Beijing 
and Shanghai, the dominant cluster types were LL (low-low) and HH 
(high-high), indicating that the NLSDWI tends to exhibit homogeneous 
clustering in most areas.

As shown in Fig. 9(g) and Fig. 9(h), the NLSDMI values for the Beijing 
and Shanghai study areas exhibit an approximately normal distribution 
after logarithmic transformation. This indicates a significant reduction 
in data skewness and effective compression of extreme values. Such a 
distribution pattern is more suitable for subsequent statistical analyses 
and enhances the stability and reliability of the results.

4.3.2. Spatial analysis of light pollution
Based on the threshold determination approach proposed in Section 

3.2.3, areas with NLSDMI values greater than 1.00 in Beijing and greater 
than 0.72 in Shanghai were identified as light-polluted areas, while 
those with values less than or equal to these thresholds were classified as 
non-polluted regions, as illustrated in Fig. 10(a) and Fig. 10(b). 
Spatially, light pollution in Beijing was more evenly distributed, with a 
noticeable tendency to align with roads, potentially affecting residents 
living alongside these areas. In contrast, light pollution in Shanghai 
displayed a localized clustering pattern, with high-pollution areas 
mainly clustered in regions where industrial and residential areas are 
mixed (such as Pudong and Baoshan). In some industrial zones, the 
NLSDMI even exceeds 180, reflecting the combined effects of industrial 
production and residential lighting.

Fig. 9. Spatial patterns of NTL mismatch: NLSDMI of residential gathering areas in (a) Beijing and (b) Shanghai; Local Moran’s I cluster maps of NLSDMI in (c) 
Beijing and (e) Shanghai (HH: high-high cluster; HL: high-low outlier; LH: low-high outlier; LL: low-low cluster); Moran scatter plots of NLSDMI in (d) Beijing and (f) 
Shanghai; Logarithmic histograms of NLSDWI for (g) Beijing and (h) Shanghai.
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The statistical results of light pollution levels in different functional 
areas of the residential gathering areas of the two megacities are shown 
in Table 5. It can be seen that Beijing research area covers an area of 
1023.77 km2, of which 115.61 km2 (11.29 %) were classified as light- 
polluted. Parks and green spaces (40.29 %) and residential areas 
(38.92 %) accounted for the largest shares of the polluted regions. This 
suggested that large ecological spaces (such as the Olympic Park) might 
have experienced light pollution diffusion due to facilities like light 
shows and pathway lighting, and that residential areas might have 
suffered from intensified pollution caused by inefficient streetlight 
design. Industrial areas made up only 5.88 % of the light-polluted land, 
which was significantly lower than in Shanghai. This was likely related 
to Beijing’s industrial relocation policies, which moved industries to 
peripheral districts such as Tongzhou and Daxing. In Shanghai, the study 
area encompassed 518.27 km2, with 78.25 km2 (15.10 %) identified as 
light-polluted. Among these, residential areas (33.59 %) and industrial 
land (30.40 %) represented the largest proportions. The higher pro
portion of industrial land might be attributed to Shanghai’s role as a 
manufacturing and port economy hub, where industrial parks operating 
around the clock—such as chemical and automobile manufacturing 
zones in Lingang and Baoshan—require continuous high-intensity 
lighting. Although the proportion of light pollution in residential areas 
was lower than in Beijing, the actual pollution density was higher when 
considering the smaller study area in Shanghai. In the residential 

gathering areas of Beijing and Shanghai, residential zones exhibited a 
notably high share of nighttime light pollution. This highlighted a sig
nificant mismatch between light supply and demand, where residents’ 
low demand for nighttime light contrasted with actual excessive illu
mination. Such over lighting not only resulted in resource waste but also 
posed potential health risks to residents. Moreover, in both Beijing and 
Shanghai, land designated for transportation hubs accounted for the 
most minor proportion of light-polluted areas, at 0.17 % and 0.19 %, 
respectively.

4.3.3. Results of field survey
The field survey results are summarized in Tables 6 and 7, and the 

field photos are provided in the supplementary material (Table S1 and 
Table S2).

Overall, the results of the field surveys are essentially consistent with 
the findings of this study. Specifically: (1) In Shanghai, sites 1 and 2, 
which are classified as Administrative and some Industrial areas that do 
not operate at night, have very low human traffic at night. However, the 
NTL intensity is not low, leading to relatively strong light pollution. (2) 
Sites 6, 8, and 9 in Shanghai, and site 2 in Beijing, are categorized as 
Business office and Commercial service. During our survey period, most 
of the Business office areas were in an overtime working state. There
fore, they have a high demand for lighting, and the human traffic is 
relatively high. Similarly, the light intensity is also relatively high, 
resulting in moderate light pollution. (3) Sites 10, 11, and 12 in 
Shanghai have relatively high human traffic, but the light intensity is not 
very high. Therefore, the light pollution is not severe. (4) Sites 4, 5, and 
7 in Shanghai, and sites 3 and 5 in Beijing, are Residential and Park and 
greenspace. There is a certain degree of light pollution in these areas, 
indicating that these regions require more moderate nighttime lighting.

It is worth noting that site 3 in Shanghai, which is classified as Park 
and greenspace, has relatively high human traffic at night. However, its 
NTL intensity is very high. The field investigation found that the lights 
used in this area emit dazzling light that is vertically projected down
ward, resulting in a very high illuminance value and, consequently, 
strong light pollution. This poses a danger to both the natural ecology of 
the park and human health.

Fig. 10. Identified nighttime light-polluted regions in residential gathering areas of (a) Beijing and (b) Shanghai.

Table 5 
Areas and proportions of light pollution across different functional zones.

Beijing Shanghai

Area (km2) Proportion Area (km2) Proportion

Residential 45.00 38.92 % 26.29 33.59 %
Business office 0.68 0.59 % 3.07 3.93 %

Commercial service 2.60 2.25 % 0.94 1.20 %
Industrial 6.80 5.88 % 23.79 30.40 %

Transportation stations 0.19 0.17 % 0.15 0.19 %
Airport facilities 3.24 2.80 % 3.59 4.58 %
Administrative 2.74 2.37 % 4.22 5.40 %

Educational 5.19 4.49 % 4.41 5.64 %
Medical 0.35 0.30 % 0.43 0.55 %

Sport and cultural 2.24 1.94 % 3.18 4.07 %
Park and green space 46.57 40.29 % 8.18 10.45 %
Total of polluted area 115.61 100.00 % 78.25 100.00 %

Total of study area 1023.77 518.27
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5. Discussion

5.1. Refined estimation of population distribution grid

In this study, a high-performance RF model was employed to 
downscale 100-m resolution population data to a finer 40-m resolution. 
This model was successfully applied to estimate the population distri
bution for the year 2022, resulting in a very high-resolution spatial 
population dataset. Compared with previous studies, this study achieved 
competitive performance in key evaluation metrics and data resolutions 
(R2 = 0.93 in Beijing and R2 = 0.81 in Shanghai at 40 m). For instance, 
Zhou et al. (2024) used RF regression with multi-source geospatial data 
to refine population data (R2 = 0.59 at 100 m), while Liu et al., 2023b
applied RF-based downscaling of census data, achieving a relatively 
higher accuracy (R2 = 0.83 at 150 m). This study effectively leveraged 
comprehensive auxiliary variables to capture nonlinear relationships, 
particularly by incorporating 40-m resolution SDGSAT-1 GLI data as one 
of the key predictors. As a high-precision source of NTL information, this 
dataset demonstrated superior performance in capturing and repre
senting urban nighttime activity patterns. In addition, considering the 
inherent differences among various POI data, they were categorized and 
refined accordingly in this study. This approach effectively revealed the 

diverse relationships between different types of POIs and population 
distribution.

As mentioned above, the RF model performed well in both two 
megacities, but there were certain differences in model performance 
between them, particularly in terms of the R2 value. Additionally, the 
RMSE and MAE metrics indicated that the prediction errors were smaller 
in Beijing and larger in Shanghai. The MSLE and scatter density plots 
revealed that, in low population density areas, prediction errors were 
slightly higher in Shanghai. The differences in model performance may 
be related to the adaptability of feature variables. In the Shanghai’s 
model, the importance of the SDGSAT-1 GLI Blue Band and building 
density was higher than in Beijing, suggesting that the population dis
tribution in Shanghai may be influenced by a more complex interplay of 
factors, leading to less stable relationships between variables and pop
ulation distribution, which increased the difficulty of model fitting. In 
contrast, the relationships between feature variables and population 
distribution in Beijing appeared more direct. Furthermore, differences in 
urban spatial structure may also contribute to the observed discrep
ancies in model performance. As a monocentric metropolitan area, 
Beijing’s employment opportunities are primarily concentrated in the 
urban center, resulting in a more direct relationship between physical 
features and population distribution, which facilitated more stable 

Table 6 
Field survey data of nighttime light pollution in Shanghai.

ID Functional zone Geographic coordinate 
(x, y)

Cars Individuals

Brightness value 
(LUX) Light pollution level

NO. 1 NO. 2 NO. 3 Mean

1 Administrative 121.5410, 
31.2240

1 1 26.5 31.2 24.5 27.40 13.70

2 Industrial 121.6129, 
31.2420

3 1 43.5 41.3 39.8 41.53 10.38

3 Park and greenspace
121.5537, 
31.2239 26 35 465.0 472.0 462.4 466.5 7.65

4 Residential
121.6131, 
31.2407 5 7 59.4 110.6 57.8 75.9 6.33

5 Park and greenspace 121.6286, 
31.2336

8 8 93.2 110.6 85.0 96.3 6.02

6 Business office 121.5318, 
31.2484

11 12 128.3 124.7 129.8 127.6 5.55

7 Residential
121.6115, 
31.2298 14 10 60.4 50.7 56.0 55.7 2.32

8 Business office
121.6154, 
31.1864

27 27 120.2 105.6 113.4 113.1 2.09

9 Commercial service 121.5479, 
31.1562

24 9 82.9 82.3 40.5 68.6 2.08

10 Residential 121.6064, 
31.1722

12 15 43.7 43.2 38.8 41.9 1.55

11 Commercial service
121.3854, 
31.1644 13 35 42.7 62.2 39.9 48.3 1.01

12 Industrial
121.4614, 
31.1289

39 25 58.2 54.6 65.8 59.5 0.93

Table 7 
Field survey data of nighttime light pollution in Beijing.

ID Functional zone
Geographic coordinate 

(x, y) Cars Individuals

Brightness value 
(LUX) Light pollution level

NO. 1 NO. 2 NO. 3 Mean

1 Medical
116.3267, 
39.7302 7 12 119.6 114.8 110.3 114.9 6.05

2 Commercial service
116.3649, 
39.8507 16 11 137.5 130.2 128.7 132.1 4.89

3 Residential 116.3268, 
39.7262

7 4 42.3 35.1 37.3 38.2 3.48

4 Educational 116.3269, 
39.7235

7 3 21.9 27.4 26.1 25.1 2.51

5 Residential
116.3267, 
39.7254 5 6 17.4 21.7 19.2 19.4 1.77
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model fitting (Huang et al., 2015). In contrast, Shanghai’s polycentric 
and mixed land-use urban structure, particularly in low-density areas, is 
characterized by urban-rural transitions and new district developments 
(Li et al., 2024; Ta et al., 2021; Zhang et al., 2019). These factors may 
lead to a decoupling of physical characteristics from actual residential 
populations, thereby increasing prediction errors in the model.

The WorldPop dataset used in this study, although undergoing 
multiple calibration processes and being widely applied, still exhibits 
spatial distribution biases. These biases are reflected in the model 
training and feature importance ranking. For example, road density had 
the largest contribution, which may be because dense road networks 
improve the accessibility of transportation, logistics, and public services, 
supporting higher population densities. However, it is also possible that 
the methodology behind the WorldPop data generation heavily relies on 
road network information, leading to an over-allocation of population 
along roads, thus increasing the contribution of this variable. Addi
tionally, the contribution of the POI_residential variable is relatively 
low, even showing a negative value in the Beijing model. Theoretically, 
residential POIs should be positively correlated with population distri
bution, as residential areas are the primary locations of human settle
ments. However, WorldPop tends to allocate population to roads rather 
than residential areas, which reduces the contribution of POI_residential 
to the model.

This study explored feasible methods to acquire refined population 
grids. High-precision population data with fine resolutions, by revealing 
spatial distribution patterns of populations, provides crucial support for 
various research fields that rely on spatially explicit population data, 
such as urban planning, resource allocation, disaster assessment, and 
social governance (Duan et al., 2024). The population grids can support 
the monitoring, evaluation, and decision-making of several SDGs. Spe
cifically, they can be applied to assess SDG 3 (Good Health and Well- 
being) (Juran et al., 2018), SDG 4 (Quality Education) (Qiu et al., 
2019), and SDG 7 (Affordable and Clean Energy) (Gaughan et al., 2019), 
and are particularly valuable in evaluating SDG 11 (Sustainable Cities 
and Communities). They can measure disaster exposure to assess SDG 
11.5 (Tuholske et al., 2021) and refine the percentage of urban pop
ulations living in slums, informal settlements, or lacking adequate 
housing to contribute to SDG 11.1.1 (Thomson et al., 2022). “Leave no 
one behind” is one of the core principles of the SDGs, and approximately 
half of the SDG indicators rely on population data for tracking progress 
(Qiu et al., 2022). This highlights the critical importance of high- 
precision grid-based population distribution data in monitoring the 
progress of the SDGs. Therefore, further advancement of high-precision 
population data research, with a focus on enhancing its usability and 
accuracy, remain essential.

5.2. NLSDMI: the most sophisticated nighttime light pollution index to 
date

Previous studies primarily focused on the phenomenon of light 
pollution and its impacts (Mu et al., 2021; Xue et al., 2020). Drawing 
inspiration from the concept of supply-demand relationships (Ye et al., 
2024), this study expanded light pollution research by exploring mis
matches in nighttime light supply and demand, with a particular 
emphasis on the imbalance between human needs and the spatial dis
tribution of NTL sources. Additionally, this research was the first to 
incorporate urban functional zone data. Functional zones, formed by 
clustering similar socioeconomic activities, are characterized by a pri
mary function (e.g., residential, educational, or commercial). These 
zones represent critical components of urban areas, facilitating detailed 
spatial division and offering insights into human interactions and de
mands within different parts of the urban environment. This study 
examined the issue from both supply and demand perspectives, inte
grating urban functional zone data with nighttime light intensity in
formation to compute demand weights for different zones. A formula 
was developed to quantify the extent of mismatches between NTL supply 

and demand. Maintaining a reasonable balance between supply and 
demand is essential, as mismatches could result in resource waste, 
environmental degradation, and potential risks to human health and 
ecosystems. The analytical framework proposed in this study provides a 
fresh perspective on nighttime light distribution and management. It 
also serves as a valuable reference for future urban lighting planning and 
the pursuit of sustainable development.

This study introduced the concept of demand weights to address the 
limitations of defining NTL demand solely based on population size. 
Instead, demand weights for different urban functional zones were 
calculated using the average NTL intensity per unit area. The results 
revealed notable variations in NTL demand weights across different 
types of urban functional zones. These disparities may be attributed to 
several underlying factors, including: (1) Differences in the types of 
socioeconomic activities: The dominant function of each zone largely 
determines the intensity and characteristics of its lighting demand. 
Commercial zones, characterized by vibrant nighttime economic activ
ities, typically require high-intensity and prolonged lighting to extend 
consumption hours and attract visitors. In contrast, residential zones 
prioritize the well-being of inhabitants, necessitating a balance between 
safety lighting and minimizing light intrusion. Industrial zones empha
size task-oriented lighting, with illumination concentrated in specific 
operational areas. (2) Temporal variations in human activity and stag
gered demand: Human activity intensity and spatial distribution vary 
considerably across functional zones throughout the day. Mobile phone 
signaling data suggest that commercial zones exhibit sustained human 
presence and activity into midnight, while activity in residential areas 
declines sharply after 22:00. Moreover, certain special-purpose zones, 
such as hospitals, require continuous high-intensity NTL to ensure the 
operation of emergency access routes. (3) Variation in lighting equip
ment types: Functional zones differ significantly in their lighting infra
structure. For instance, airports employ high-mast floodlights and in- 
ground LED luminaires to meet the safety requirements of aviation en
vironments, illuminating runways, aprons, and adjacent parking areas 
with high-intensity, large-coverage lighting. (4) Policy-driven regula
tory constraints: Certain ecological and natural areas—such as urban 
parks, wetlands, and green spaces—are subject to strict lighting controls 
under “dark-sky” protection policies. These regulations aim to reduce 
light pollution, preserve ecological integrity, and maintain conditions 
suitable for astronomical observation, thereby significantly limiting 
artificial illumination in such zones.

As a crucial component of modern urban infrastructure, NTL en
hances nighttime safety and functionality, yet it has also led to 
increasingly severe light pollution. Although light pollution is not 
explicitly mentioned in the SDGs, it is closely linked to several goals, 
particularly SDG 3 and SDGs 11–15 (Lyytimäki, 2025). The NLSDMI 
proposed in this study provides a scientific and quantitative foundation 
for light pollution management. It identifies redundant and misallocated 
lighting resources, offering a more accurate reflection of urban lighting 
suitability and environmental pressure than conventional light intensity 
metrics. Guided by NLSDMI, street lighting can be dimmed in targeted 
areas to improve sleep quality (Kyba et al., 2021), supporting SDG 3; 
Restricting private lighting sources and quantifying light spillover can 
improve energy efficiency (Bouroussis and Topalis, 2020), contributing 
to SDG 7; additionally, establishing lighting zone classifications and 
integrating ecological data into tailored lighting design can promote 
more sustainable urban environments (Haddock et al., 2019; Tavares 
et al., 2021), aligning with SDG 11. In summary, light pollution man
agement based on NLSDMI represents a vital pathway toward achieving 
multiple SDGs in a coordinated and evidence-based manner.

5.3. Differences in nighttime light pollution patterns among megacities 
with specific functions

This study selected Beijing and Shanghai, two representative mega
cities in China, as the research areas to explore the extent and spatial 
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patterns of nighttime light pollution based on the NLSDMI developed. 
The results revealed two major differences: (1) Differences in land-use 
types with high NTL. In Beijing, a relatively large proportion of light- 
polluted areas are associated with parks and green spaces, followed by 
residential areas. Parks and green spaces typically require minimal 
artificial lighting, and excessive illumination may disrupt local ecosys
tems and wildlife habitats (Huang et al., 2023), while also reducing 
urban livability. In contrast, besides residential areas, industrial areas in 
Shanghai exhibit the second highest proportion of light pollution. This 
may be due to the low population density in industrial areas, while 
certain 24-h industrial operations generate high-intensity lighting. (2) 
Differences in spatial distribution patterns of light pollution. Beijing 
exhibits a more dispersed and evenly distributed pattern of light pollu
tion. This may be related to its exemplary role as China’s political and 
cultural center, leading to a more balanced urban development. In 
contrast, Shanghai presents a more concentrated and pronounced 
pattern of light pollution, with significantly higher NLSDMI values. This 
is likely a result of its function as an economic center, where intensive 
commercial and industrial activities drive greater demand for nighttime 
illumination.

Cities differ significantly in their light demand and pollution char
acteristics due to variations in functional roles and development levels, 
which reflect their distinct economic, social, and environmental re
sponsibilities. (1) In terms of urban functional positioning, economically 
driven cities like Shanghai prioritize economic activities, with frequent 
nighttime commercial and industrial operations generating high light 
demand. Politically oriented cities like Beijing focus on administrative 
and cultural functions, leading to more dispersed light demand. Light 
pollution tends to be more evenly distributed in these cities, with 
notable impacts along roads, within administrative zones, and in green 
spaces. (2) In terms of development, advanced cities with well- 
established infrastructure experience more frequent and intense night
time light use, exacerbating light pollution issues. These cities should 
focus on implementing energy-saving technologies and strengthening 
light pollution control. Conversely, less developed cities, while currently 
facing lighter light pollution due to lower economic activity and light 
demand, may encounter growing challenges as urbanization accelerates. 
Effective research and management of light pollution require careful 
consideration of city-type differences. Strategies must be tailored to 
align with each city’s functional roles and development characteristics, 
ensuring targeted and effective mitigation measures.

5.4. Strategies for refined management of NTL in residential gathering 
areas

As cities continue to develop, achieving the SDGs and advancing the 
vision of human well-being and sustainable communities necessitate 
more precise management of light pollution. Building on the findings of 
this study, this paper offers targeted recommendations from various 
perspectives to support efforts in mitigating light pollution, enhancing 
urban lighting environments, and fostering sustainable urban 
development. 

(1) Adopt targeted lighting strategies. In residential areas, imple
ment human-centered smart dimming systems that dynamically 
adjust brightness at night based on actual demand, thereby 
minimizing disruption to residents’ sleep and well-being. In parks 
and green spaces, reduce unnecessary decorative lighting and 
enforce a night-time lighting curfew (e.g., 23:00–05:00) to pre
serve natural darkness and protect ecosystems and wildlife hab
itats (Xue et al., 2020). In industrial zones, promote the adoption 
of energy-efficient, environmentally friendly lighting systems and 
strictly regulate external illumination during non-operational 
hours to minimize negative effects on surrounding areas.

(2) Refine urban land-use planning. Incorporate light-pollution 
buffer zones into functional zoning (Gaston et al., 2015; Wei 

et al., 2025): establish green belts or low-illumination corridors 
between high-intensity commercial districts and residential 
neighborhoods, using vegetation and terrain to block light spill
over and improve nocturnal visual comfort for residents. Impose 
strict lighting thresholds on ecological corridors—such as parks, 
riverbanks, and wetlands to balance ecological protection with 
nighttime mobility and safety.

(3) Innovate lighting facilities and technologies. Encourage the 
use of low-color-temperature, low-intensity luminaires to miti
gate the proportion of blue light and its impacts on human health 
and ecosystems (Lin et al., 2023; Liu et al., 2024). Deploy smart 
streetlights to achieve on-demand lighting and maximize energy 
savings (Pardo-Bosch et al., 2022). Promote modular LED fixtures 
and plug-and-play control units to streamline maintenance and 
upgrades, extend equipment lifespan, and reduce life-cycle en
ergy consumption.

5.5. Limitations and prospects

This study explored and applied SDGSAT-1 GLI data to derive 40-m 
resolution population estimates for 2022 and conducted a preliminary 
investigation into light pollution. However, several aspects require 
further exploration. The limitations of this study are outlined below. 

(1) The availability and accuracy of data require further 
improvement. This study employed SDGSAT-1 GLI data with 
basic preprocessing. However, visual inspection and comparisons 
with other studies suggest that the data may retain residual noise 
and cloud artifacts that are challenging to remove. Although this 
study utilized high-quality NTL images, future research using 
lower-quality data will need more robust and comprehensive 
preprocessing methods. Additionally, the urban functional zone 
data used in this study were relatively outdated. While correc
tions were made using POI data, discrepancies with the actual 
urban structure remain. Furthermore, the dataset lacked road 
information, a critical urban component that should be integrated 
into future studies to enhance accuracy and completeness.

(2) More accurate scale transfer models need to be developed. 
This study utilized a RF model for population estimation, suc
cessfully capturing nonlinear relationships between population 
data and auxiliary variables. However, the model’s performance 
varied across different cities, with inconsistent results. Future 
research should prioritize optimizing model parameters and ar
chitecture and exploring models with enhanced migratability. 
Additionally, incorporating auxiliary variables more strongly 
correlated with the target variable and refining variable selection 
methods are critical for improving accuracy and applicability of 
the model.

(3) The light pollution evaluation method remains to be further 
optimized. This study defined urban light pollution through a 
supply-demand framework, calculated mismatch indices, and 
developed zonal maps of nighttime light pollution. It further 
analyzed factors such as population distribution, urban func
tional zones, and intercity differences. However, the findings 
were not validated through comprehensive and systematic in
vestigations. Although the field survey based on statistical 
random sampling conducted by this study can provide some field 
information, the limitations of the survey coverage, insufficient 
spatial representation of the sample points, insufficient syn
chronization of measurement time, irregular instrument opera
tion, and deviations in the counting of pedestrians and vehicles 
will ultimately affect the accuracy and generalizability of the 
results. Moreover, the process of determining demand weights 
could be further improved.
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6. Conclusion

This study provides a comprehensive assessment of nighttime light 
pollution in typical megacities, taking the residential gathering regions 
of Beijing and Shanghai as case studies. By leveraging SDGSAT-1 GLI 
imagery and other multi-source high-resolution spatial data, a novel 
index (NLSDMI) with 40-m resolution was developed. With the help of 
NLSDMI and its spatial distribution, the imbalance between nighttime 
lighting supply and human activity demand was finely quantified, and 
key areas affected by light pollution was further identified. In the resi
dential gathering area of Beijing, the light pollution area reached 
115.61 km2 (11.29 %), mainly distributed in green spaces and resi
dential zones. In Shanghai, the situation in residential gathering are was 
more severe, with an affected area of 78.25 km2 (15.10 %), mainly 
concentrated in residential and industrial zones. These findings high
lighted the pressing need for tailored management of urban spaces to 
enhance urban sustainability, such as targeted lighting strategy, energy- 
efficient technology, and refined urban planning. Future research should 
focus on enhancing data accuracy, improving validation methods, and 
exploring the applicability of findings to cities with diverse types and 
scales, thus providing broader theoretical support and practical guid
ance for global SDGs-oriented urban management.

The significance of this study lies in its innovative approach to 
quantifying and analyzing nighttime light pollution from both the sup
ply and demand perspectives. It is the first to employ high-resolution 
SDGSAT-1 GLI imagery to provide a fine-scale representation of NTL 
supply, and to estimate the spatial distribution of lighting demand based 
on RF-downscaled population data and weighted urban functional 
zoning. A continuous index of nighttime light pollution (NLSDMI) was 
constructed to quantify the imbalance between lighting supply and de
mand, thereby enabling the identification of key light-polluted areas. By 
revealing the mismatch, this study offers valuable insights for opti
mizing urban lighting and advancing the achievement of the SDGs.
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